148 research outputs found

    The UTRC wind energy conversion system performance analysis for horizontal axis wind turbines (WECSPER)

    Get PDF
    The theory for the UTRC Energy Conversion System Performance Analysis (WECSPER) for the prediction of horizontal axis wind turbine performance is presented. Major features of the analysis are the ability to: (1) treat the wind turbine blades as lifting lines with a prescribed wake model; (2) solve for the wake-induced inflow and blade circulation using real nonlinear airfoil data; and (3) iterate internally to obtain a compatible wake transport velocity and blade loading solution. This analysis also provides an approximate treatment of wake distortions due to tower shadow or wind shear profiles. Finally, selected results of internal UTRC application of the analysis to existing wind turbines and correlation with limited test data are described

    A prescribed wake rotor inflow and flow field prediction analysis, user's manual and technical approach

    Get PDF
    A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model

    Helicopter rotor wake geometry and its influence in forward flight. Volume 2: Wake geometry charts

    Get PDF
    Isometric and projection view plots, inflow ratio nomographs, undistorted axial displacement nomographs, undistorted longitudinal and lateral coordinates, generalized axial distortion nomographs, blade/vortex passage charts, blade/vortex intersection angle nomographs, and fore and aft wake boundary charts are discussed. Example condition, in flow ratio, undistorted axial location, longitudinal and lateral coordinates, axial coordinates distortions, blade/tip vortex intersections, angle of intersection, and fore and aft wake boundaries are also discussed

    Helicopter rotor wake geometry and its influence in forward flight. Volume 1: Generalized wake geometry and wake effect on rotor airloads and performance

    Get PDF
    An analytic investigation to generalize wake geometry of a helicopter rotor in steady level forward flight and to demonstrate the influence of wake deformation in the prediction of rotor airloads and performance is described. Volume 1 presents a first level generalized wake model based on theoretically predicted tip vortex geometries for a selected representative blade design. The tip vortex distortions are generalized in equation form as displacements from the classical undistorted tip vortex geometry in terms of vortex age, blade azimuth, rotor advance ratio, thrust coefficient, and number of blades. These equations were programmed to provide distorted wake coordinates at very low cost for use in rotor airflow and airloads prediction analyses. The sensitivity of predicted rotor airloads, performance, and blade bending moments to the modeling of the tip vortex distortion are demonstrated for low to moderately high advance ratios for a representative rotor and the H-34 rotor. Comparisons with H-34 rotor test data demonstrate the effects of the classical, predicted distorted, and the newly developed generalized wake models on airloads and blade bending moments. Use of distorted wake models results in the occurrence of numerous blade-vortex interactions on the forward and lateral sides of the rotor disk. The significance of these interactions is related to the number and degree of proximity to the blades of the tip vortices. The correlation obtained with the distorted wake models (generalized and predicted) is encouraging

    User's manual for the coupled mode version of the normal modes rotor aeroelastic analysis computer program

    Get PDF
    This User's Manual was prepared to provide the engineer with the information required to run the coupled mode version of the Normal Modes Rotor Aeroelastic Analysis Computer Program. The manual provides a full set of instructions for running the program, including calculation of blade modes, calculations of variable induced velocity distribution and the calculation of the time history of the response for either a single blade or a complete rotor with an airframe (the latter with constant inflow)

    An evaluation of a computer code based on linear acoustic theory for predicting helicopter main rotor noise

    Get PDF
    Acoustic characteristics predicted using a recently developed computer code were correlated with measured acoustic data for two helicopter rotors. The analysis, is based on a solution of the Ffowcs-Williams-Hawkings (FW-H) equation and includes terms accounting for both the thickness and loading components of the rotational noise. Computations are carried out in the time domain and assume free field conditions. Results of the correlation show that the Farrassat/Nystrom analysis, when using predicted airload data as input, yields fair but encouraging correlation for the first 6 harmonics of blade passage. It also suggests that although the analysis represents a valuable first step towards developing a truly comprehensive helicopter rotor noise prediction capability, further work remains to be done identifying and incorporating additional noise mechanisms into the code

    Forcing and Velocity Correlations in a Vibrated Granular Monolayer

    Full text link
    The role of forcing on the dynamics of a vertically shaken granular monolayer is investigated. Using a flat plate, surprising negative velocity correlations are measured. A mechanism for this anti-correlation is proposed with support from both experimental results and molecular dynamics simulations. Using a rough plate, velocity correlations are positive, and the velocity distribution evolves from a gaussian at very low densities to a broader distribution at high densities. These results are interpreted as a balance between stochastic forcing, interparticle collisions, and friction with the plate.Comment: 4 pages, 5 figure

    Stochastic to deterministic crossover of fractal dimension for a Langevin equation

    Full text link
    Using algorithms of Higuchi and of Grassberger and Procaccia, we study numerically how fractal dimensions cross over from finite-dimensional Brownian noise at short time scales to finite values of deterministic chaos at longer time scales for data generated from a Langevin equation that has a strange attractor in the limit of zero noise. Our results suggest that the crossover occurs at such short time scales that there is little chance of finite-dimensional Brownian noise being incorrectly identified as deterministic chaos.Comment: 12 pages including 3 figures, RevTex and epsf. To appear Phys. Rev. E, April, 199

    Lyapunov spectral analysis of a nonequilibrium Ising-like transition

    Full text link
    By simulating a nonequilibrium coupled map lattice that undergoes an Ising-like phase transition, we show that the Lyapunov spectrum and related dynamical quantities such as the dimension correlation length~ξδ\xi_\delta are insensitive to the onset of long-range ferromagnetic order. As a function of lattice coupling constant~gg and for certain lattice maps, the Lyapunov dimension density and other dynamical order parameters go through a minimum. The occurrence of this minimum as a function of~gg depends on the number of nearest neighbors of a lattice point but not on the lattice symmetry, on the lattice dimensionality or on the position of the Ising-like transition. In one-space dimension, the spatial correlation length associated with magnitude fluctuations and the length~ξδ\xi_\delta are approximately equal, with both varying linearly with the radius of the lattice coupling.Comment: 29 pages of text plus 15 figures, uses REVTeX macros. Submitted to Phys. Rev. E

    Studies of Phase Turbulence in the One Dimensional Complex Ginzburg-Landau Equation

    Full text link
    The phase-turbulent (PT) regime for the one dimensional complex Ginzburg-Landau equation (CGLE) is carefully studied, in the limit of large systems and long integration times, using an efficient new integration scheme. Particular attention is paid to solutions with a non-zero phase gradient. For fixed control parameters, solutions with conserved average phase gradient ν\nu exist only for ∣ν∣|\nu| less than some upper limit. The transition from phase to defect-turbulence happens when this limit becomes zero. A Lyapunov analysis shows that the system becomes less and less chaotic for increasing values of the phase gradient. For high values of the phase gradient a family of non-chaotic solutions of the CGLE is found. These solutions consist of spatially periodic or aperiodic waves travelling with constant velocity. They typically have incommensurate velocities for phase and amplitude propagation, showing thereby a novel type of quasiperiodic behavior. The main features of these travelling wave solutions can be explained through a modified Kuramoto-Sivashinsky equation that rules the phase dynamics of the CGLE in the PT phase. The latter explains also the behavior of the maximal Lyapunov exponents of chaotic solutions.Comment: 16 pages, LaTeX (Version 2.09), 10 Postscript-figures included, submitted to Phys. Rev.
    • …
    corecore