107 research outputs found

    Evaluation and patient experience of wireless noninvasive fetal heart rate monitoring devices

    Get PDF
    Introduction: In clinical practice, fetal heart rate monitoring is performed intermittently using Doppler ultrasound, typically for 30 minutes. In case of a non-reassuring heart rate pattern, monitoring is usually prolonged. Noninvasive fetal electrocardiography may be more suitable for prolonged monitoring due to improved patient comfort and signal quality. This study evaluates the performance and patient experience of four noninvasive electrocardiography devices to assess candidate devices for prolonged noninvasive fetal heart rate monitoring. Material and methods: Non-critically sick women with a singleton pregnancy from 24 weeks of gestation were eligible for inclusion. Fetal heart rate monitoring was performed during standard care with a Doppler ultrasound device (Philips Avalon-FM30) alone or with this Doppler ultrasound device simultaneously with one of four noninvasive electrocardiography devices (Nemo Fetal Monitoring System, Philips Avalon-Beltless, Demcon Dipha-16 and Dräger Infinity-M300). Performance was evaluated by: success rate, positive percent agreement, bias, 95% limits of agreement, regression line, root mean square error and visual agreement using FIGO guidelines. Patient experience was captured using a self-made questionnaire. Results: A total of 10 women were included per device. For fetal heart rate, Nemo performed best (success rate: 99.4%, positive percent agreement: 94.2%, root mean square error 5.1 BPM, bias: 0.5 BPM, 95% limits of agreement: −9.7 – 10.7 BPM, regression line: y = −0.1x + 11.1) and the cardiotocography tracings obtained simultaneously by Nemo and Avalon-FM30 received the same FIGO classification. Comparable results were found with the Avalon-Beltless from 36 weeks of gestation, whereas the Dipha-16 and Infinity-M300 performed significantly worse. The Avalon-Beltless, Nemo and Infinity-M300 closely matched the performance of the Avalon-FM30 for maternal heart rate, whereas the performance of the Dipha-16 deviated more. Patient experience scores were higher for the noninvasive electrocardiography devices. Conclusions: Both Nemo and Avalon-Beltless are suitable devices for (prolonged) noninvasive fetal heart rate monitoring, taking their intended use into account. But outside its intended use limit of 36 weeks’ gestation, the Avalon-Beltless performs less well, comparable to the Dipha-16 and Infinity-M300, making them currently unsuitable for (prolonged) noninvasive fetal heart rate monitoring. Noninvasive electrocardiography devices appear to be preferred due to greater comfort and mobility.</p

    Increased prevalence of abnormal vertebral patterning in fetuses and neonates with trisomy 21

    Get PDF
    Purpose: To assess the prevalence of an abnormal number of ribs in a cohort of fetuses and neonates with trisomy 21 and compare this with a subgroup of fetuses without anomalies. Materials and methods: Radiographs of 67 deceased fetuses, neonates, and infants that were diagnosed with trisomy 21 were reviewed. Terminations of pregnancy were included. The control group was composed of 107 deceased fetuses, neonates, and infants without known chromosomal abnormalities, structural malformations, infections or placental pathology. Cases in which the number of thoracic ribs or presence of cervical ribs could not be reliably assessed were excluded. The literature concerning vertebral patterning in trisomy 21 cases and healthy subjects was reviewed. Results: Absent or rudimentary 12th thoracic ribs were found in 26/54 (48.1%) cases with trisomy 21 and cervical ribs were present in 27/47 (57.4%) cases. This prevalence was significantly higher compared to controls (28/100, 28.0%, Χ2(1) = 6.252, p = .012 and 28/97, 28.9%, Χ2(1) = 10.955, p < .001, respectively). Conclusions: Rudimentary or absent 12th thoracic ribs and cervical ribs are significantly more prevalent in deceased fetuses and infants with trisomy 21

    Vascular reactivity is altered in the placentas of fetuses with congenital diaphragmatic hernia

    Get PDF
    Introduction: Infants with congenital diaphragmatic hernia (CDH) often develop pulmonary hypertension but frequently fail to respond to vasodilator therapy, for instance because of an altered pulmonary vasoreactivity. Investigating such alterations in vivo is impossible. We hypothesised that these alterations are also present in fetoplacental vessels, since both vasculatures are exposed to the same circulating factors (e.g. endothelin-1) and respond similarly to certain stimuli (e.g. hypoxia). As proof-of-concept, we compared fetoplacental vasoreactivity between healthy and CDH-affected placentas. Methods: Fetoplacental vascular function of healthy and antenatally diagnosed left-sided CDH fetuses was assessed by wire myography. Placental expression of enzymes and receptors involved in the altered vasoreactive pathways was measured using quantitative PCR. Results: CDH arteries (n = 6) constricted more strongly to thromboxane A2 agonist U46619 (p &lt; 0.001) and dilated less to bradykinin (p = 0.01) and nitric oxide (NO)-donor sodium nitroprusside (p = 0.04) than healthy arteries (n = 8). Vasodilation to prostacyclin analogue iloprost and adenylate cyclase stimulator forskolin, and vasoconstriction to endothelin-1 were not different between both groups. Angiotensin II did not induce vasoconstriction. Phosphodiesterase inhibitors sildenafil and milrinone did not affect responses to sodium nitroprusside, forskolin, or U46619. The mRNA expression of guanylate cyclase 1 soluble subunit alpha 1 (p = 0.003) and protein kinase cyclic guanine monophosphate (cGMP)-dependent 1 (p = 0.02) were reduced in CDH versus healthy placentas. Discussion: The identified changes in the thromboxane and NO-cGMP pathways in the fetoplacental vasculature correspond with currently described alterations in the pulmonary vasculature in CDH. Therefore, fetoplacental arteries may provide an opportunity to predict pulmonary therapeutic responses in infants with CDH.</p

    Increased prevalence of abnormal vertebral patterning in fetuses and neonates with trisomy 21

    Get PDF
    Purpose: To assess the prevalence of an abnormal number of ribs in a cohort of fetuses and neonates with trisomy 21 and compare this with a subgroup of fetuses without anomalies. Materials and methods: Radiographs of 67 deceased fetuses, neonates, and infants that were diagnosed with trisomy 21 were reviewed. Terminations of pregnancy were included. The control group was composed of 107 deceased fetuses, neonates, and infants without known chromosomal abnormalities, structural malformations, infections or placental pathology. Cases in which the number of thoracic ribs or presence of cervical ribs could not be reliably assessed were excluded. The literature concerning vertebral patterning in trisomy 21 cases and healthy subjects was reviewed. Results: Absent or rudimentary 12th thoracic ribs were found in 26/54 (48.1%) cases with trisomy 21 and cervical ribs were present in 27/47 (57.4%) cases. This prevalence was significantly higher compared to controls (28/100, 28.0%, Χ2(1) = 6.252, p = .012 and 28/97, 28.9%, Χ2(1) = 10.955, p < .001, respectively). Conclusions: Rudimentary or absent 12th thoracic ribs and cervical ribs are significantly more prevalent in deceased fetuses and infants with trisomy 21

    Potential higher risk of tethered spinal cord in children after prenatal surgery for myelomeningocele:A systematic review and meta-analysis

    Get PDF
    Introduction We performed a systematic review and meta-analysis on the incidence of secondary tethered spinal cord (TSC) between prenatal and postnatal closure in patients with MMC. The objectives was to understand the incidence of secondary TSC after prenatal surgery for MMC compared to postnatal surgery for MMC. Material and methods On May 4, 2023, a systematic search was conducted in Medline, Embase, and the Cochrane Library to gather relevant data. Primary studies focusing on repair type, lesion level, and TSC were included, while non-English or non-Dutch reports, case reports, conference abstracts, editorials, letters, comments, and animal studies were excluded. Two reviewers assessed the included studies for bias risk, following PRISMA guidelines. TSC frequency in MMC closure types was determined, and the relationship between TSC occurrence and closure technique was analyzed using relative risk and Fisher's exact test. Subgroup analysis revealed relative risk differences based on study designs and follow-up periods. A total of ten studies, involving 2,724 patients, were assessed. Among them, 2,293 patients underwent postnatal closure, while 431 received prenatal closure for the MMC defect. In the prenatal closure group, TSC occurred in 21.6% (n = 93), compared to 18.8% (n = 432) in the postnatal closure group. The relative risk (RR) of TSC in patients with prenatal MMC closure versus postnatal MMC closure was 1.145 (95%CI 0.939 to 1.398). Fisher's exact test indicated a statistically non-significant association (p = 0.106) between TSC and closure technique. When considering only RCT and controlled cohort studies, the overall RR for TSC was 1.308 (95%CI 1.007 to 1.698) with a non-significant association (p = .053). For studies focusing on children up until early puberty (maximum 12 years follow-up), the RR for tethering was 1.104 (95%CI 0.876 to 1.391), with a non-significant association (p = 0.409). Conclusion and discussion This review found no significant increase in relative risk of TSC between prenatal and postnatal closure in MMC patients, but a trend of increased TSC in the prenatal group. More longterm data on TSC after fetal closure is needed for better counseling and outcomes in MMC.</p

    The tissue-specific aspect of genome-wide DNA methylation in newborn and placental tissues: Implications for epigenetic epidemiologic studies

    Get PDF
    Epigenetic programming is essential for lineage differentiation, embryogenesis and placentation in early pregnancy. In epigenetic association studies, DNA methylation is often examined in DNA derived from white blood cells, although its validity to other tissues of interest remains questionable. Therefore, we investigated the tissue specificity of epigenome-wide DNA methylation in newborn and placental tissues. Umbilical cord white blood cells (UC-WBC, n = 25), umbilical cord blood mononuclear cells (UC-MNC, n = 10), human umbilical vein endothelial cells (HUVEC, n = 25) and placental tissue (n = 25) were obtained from 36 uncomplicated pregnancies. Genome-wide DNA methylation was measured by the Illumina HumanMethylation450K BeadChip. Using UC-WBC as a reference tissue, we identified 3595 HUVEC tissue-specific differentially methylated regions (tDMRs) and 11,938 placental tDMRs. Functional enrichment analysis showed that HUVEC and placental tDMRs were involved in embryogenesis, vascular development and regulation of gene expression. No tDMRs were identified in UC-MNC. In conclusion, the extensive amount of genome-wide HUVEC and placental tDMRs underlines the relevance of tissue-specific approaches in future epigenetic association studies, or the use of validated representative tissues for a certain disease of interest, if available. To this purpose, we herewith provide a relevant dataset of paired, tissue-specific, genome-wide methylation measurements in newborn tissues
    • …
    corecore