3,877 research outputs found

    Reply to the "Comment on 'Phase diagram of an impurity in the spin-1/2 chain: two channel Kondo effect versus Curie law'"

    Full text link
    In a comment by A.A. Zvyagin the phase diagram in our Letter [Phys. Rev. Lett. 86, 516 (2001)] was critisized of being incomplete and a new fixed point was suggested. We show that this point is in fact not a fixed point and that the phase diagram is correct as presented.Comment: Reply to a comment by A.A. Zvyagin. 1 page, 1 figure. The latest version in PDF format is available from http://fy.chalmers.se/~eggert/papers/reply.pd

    Impurities in S=1/2 Heisenberg Antiferromagnetic Chains: Consequences for Neutron Scattering and Knight Shift

    Full text link
    Non-magnetic impurities in an S=1/2 Heisenberg antiferromagnetic chain are studied using boundary conformal field theory techniques and finite-temperature quantum Monte Carlo simulations. We calculate the static structure function, S_imp(k), measured in neutron scattering and the local susceptibility, chi_i measured in Knight shift experiments. S_imp(k) becomes quite large near the antiferromagnetic wave-vector, and exhibits much stronger temperature dependence than the bulk structure function. \chi_i has a large component which alternates and increases as a function of distance from the impurity.Comment: 8 pages (revtex) + one postscript file with 6 figures. A complete postscript file with all figures + text (10pages) is available from http://fy.chalmers.se/~eggert/struct.ps or by request from [email protected] Submitted to Phys. Rev. Let

    Numerical Evidence for Multiplicative Logarithmic Corrections from Marginal Operators

    Full text link
    Field theory calculations predict multiplicative logarithmic corrections to correlation functions from marginally irrelevant operators. However, for the numerically most suitable model - the spin-1/2 chain - these corrections have been controversial. In this paper, the spin-spin correlation function of the antiferromagnetic spin-1/2 chain is calculated numerically in the presence of a next nearest neighbor coupling J2 for chains of up to 32 sites. By varying the coupling strength J2 we can control the effect of the marginal operator, and our results unambiguously confirm the field theory predictions. The critical value at which the marginal operator vanishes has been determined to be at J2 = 0.241167 +/- 0.000005J.Comment: revised paper with extended data-analysis. 5 pages, using revtex with 4 embedded figures (included with macro). A complete postscript file with all figures + text (5 pages) is available from http://FY.CHALMERS.SE/~eggert/marginal.ps or by request from [email protected]

    Edge Logarithmic Corrections probed by Impurity NMR

    Get PDF
    Semi-infinite quantum spin chains display spin autocorrelations near the boundary with power-law exponents that are given by boundary conformal field theories. We show that NMR measurements on spinless impurities that break a quantum spin chain lead to a spin-lattice relaxation rate 1/T_1^edge that has a temperature dependence which is a direct probe of the anomalous boundary exponents. For the antiferromagnetic S=1/2 spin chain, we show that 1/T_1^edge behaves as T (log T)^2 instead of (log T)^1/2 for a bulk measurement. We show that, in the case of a one-dimensional conductor described by a Luttinger liquid, a similar measurement leads to a relaxation rate 1/T_1^{edge} behaving as T, independent of the anomalous exponent K_rho.Comment: 4 pages, 1 encapsulated figure, corrected typo

    Trapping of dielectric particles with light-induced space-charge fields

    Get PDF
    Light-induced space-charge fields in lithium niobate crystals are used to trap and manipulate dielectric particles on the surface of such crystals. Without any external voltage source, strong field gradients are present in the proximity of the crystal surface. These are used to trap particles with diameters in the range between 100 nm and some tens of micrometers

    Letters between C. A. Eggert and William Kerr\u27s secretary

    Get PDF
    Letters concerning position in the modern languages department at Utah Agricultural College being filled

    Neel order in doped quasi one-dimensional antiferromagnets

    Full text link
    We study the Neel temperature of quasi one-dimensional S=1/2 antiferromagnets containing non-magnetic impurities. We first consider the temperature dependence of the staggered susceptibility of finite chains with open boundary conditions, which shows an interesting difference for even and odd length chains. We then use a mean field theory treatment to incorporate the three dimensional inter-chain couplings. The resulting Neel temperature shows a pronounced drop as a function of doping by up to a factor of 5.Comment: 4 pages in revtex4 format including 2 epsf-embedded figures. The latest version in PDF format is available from http://fy.chalmers.se/~eggert/papers/staggered.pd

    Highest weight state description of the isotropic spin-1 chain

    Full text link
    We introduce an overcomplete highest weight state basis as a calculational tool for the description of the isotropic spin-1 chain with bilinear exchange coupling J1 and biquadratic coupling J2. The ground state can be expressed exactly at the three special points in the phase diagram where the Hamiltonian corresponds to a sum of nearest neighbor total spin projection operators (J1=0>J2, J1=-J2<0, and J1=-J2/3<0). In particular, at the phase transition point J1=-J2<0 it is possible to exactly compute the ground states, excited states, expectation values, and correlation functions by using the new total spin basis.Comment: 8 pages, 1 figure, the most recent version can be found at http://www.physik.uni-kl.de/eggert/papers

    Interplay of Coulomb blockade and Aharonov-Bohm resonances in a Luttinger liquid

    Full text link
    We consider a ring of strongly interacting electrons connected to two external leads by tunnel junctions. By studying the positions of conductance resonances as a function of gate voltage and magnetic flux the interaction parameter gg can be determined experimentally. For a finite ring the minimum conductance is strongly influenced by device geometry and electron-electron interactions. In particular, if the tunnel junctions are close to one another the interaction-related orthogonality catastrophe is suppressed and the valley current is unexpectedly large.Comment: 10 page
    corecore