1,713 research outputs found

    Air entrainment through free-surface cusps

    Get PDF
    In many industrial processes, such as pouring a liquid or coating a rotating cylinder, air bubbles are entrapped inside the liquid. We propose a novel mechanism for this phenomenon, based on the instability of cusp singularities that generically form on free surfaces. The air being drawn into the narrow space inside the cusp destroys its stationary shape when the walls of the cusp come too close. Instead, a sheet emanates from the cusp's tip, through which air is entrained. Our analytical theory of this instability is confirmed by experimental observation and quantitative comparison with numerical simulations of the flow equations

    Simulation of a Dripping Faucet

    Full text link
    We present a simulation of a dripping faucet system. A new algorithm based on Lagrangian description is introduced. The shape of drop falling from a faucet obtained by the present algorithm agrees quite well with experimental observations. Long-term behavior of the simulation can reproduce period-one, period-two, intermittent and chaotic oscillations widely observed in experiments. Possible routes to chaos are discussed.Comment: 20 pages, 15 figures, J. Phys. Soc. Jpn. (in press

    Experiments in free shear flows: Status and needs for the future

    Get PDF
    Experiments in free turbulent flows are recommended with the primary concern placed on classical flows in order to augment understanding and for model building. Five classes of experiments dealing with classical free turbulent flows are outlined and proposed as being of particular significance for the near future. These classes include the following: (1) Experiments clarifying the effect of density variation owing to use of different gases, with and without the additional effect of density variation due to high Mach number or other effects; (2) experiments clarifying the role and importance of various parameters which determine the behavior of the near field as well as the condictions under which any of these parameters can be neglected; (3) experiments determining the cumulative effect of initial conditions in terms of distance to fully established flow; (4) experiments for cases where two layers of distinctly different initial turbulence structure flow side by side at the same mean speed; and (5) experiment using contemporary experimental techniques to study structure in free turbulent shear flows in order to compliment and support contemporary work on boundary layers

    The Two Fluid Drop Snap-off Problem: Experiments and Theory

    Get PDF
    We address the dynamics of a drop with viscosity λη\lambda \eta breaking up inside another fluid of viscosity η\eta. For λ=1\lambda=1, a scaling theory predicts the time evolution of the drop shape near the point of snap-off which is in excellent agreement with experiment and previous simulations of Lister and Stone. We also investigate the λ\lambda dependence of the shape and breaking rate.Comment: 4 pages, 3 figure

    Hydrodynamic theory of de-wetting

    Full text link
    A prototypical problem in the study of wetting phenomena is that of a solid plunging into or being withdrawn from a liquid bath. In the latter, de-wetting case, a critical speed exists above which a stationary contact line is no longer sustainable and a liquid film is being deposited on the solid. Demonstrating this behavior to be a hydrodynamic instability close to the contact line, we provide the first theoretical explanation of a classical prediction due to Derjaguin and Levi: instability occurs when the outer, static meniscus approaches the shape corresponding to a perfectly wetting fluid

    Theory of the collapsing axisymmetric cavity

    Get PDF
    We investigate the collapse of an axisymmetric cavity or bubble inside a fluid of small viscosity, like water. Any effects of the gas inside the cavity as well as of the fluid viscosity are neglected. Using a slender-body description, we show that the minimum radius of the cavity scales like h0tαh_0 \propto t'^{\alpha}, where tt' is the time from collapse. The exponent α\alpha very slowly approaches a universal value according to α=1/2+1/(4ln(t))\alpha=1/2 + 1/(4\sqrt{-\ln(t')}). Thus, as observed in a number of recent experiments, the scaling can easily be interpreted as evidence of a single non-trivial scaling exponent. Our predictions are confirmed by numerical simulations

    The Management and Use of Social Network Sites in a Government Department

    Full text link
    In this paper we report findings from a study of social network site use in a UK Government department. We have investigated this from a managerial, organisational perspective. We found at the study site that there are already several social network technologies in use, and that these: misalign with and problematize organisational boundaries; blur boundaries between working and social lives; present differing opportunities for control; have different visibilities; have overlapping functionality with each other and with other information technologies; that they evolve and change over time; and that their uptake is conditioned by existing infrastructure and availability. We find the organisational complexity that social technologies are often hoped to cut across is, in reality, something that shapes their uptake and use. We argue the idea of a single, central social network site for supporting cooperative work within an organisation will hit the same problems as any effort of centralisation in organisations. We argue that while there is still plenty of scope for design and innovation in this area, an important challenge now is in supporting organisations in managing what can best be referred to as a social network site 'ecosystem'.Comment: Accepted for publication in JCSCW (The Journal of Computer Supported Cooperative Work

    Changes In Apparent Molar Water Volume and DKP Solubility Yield Insights on the Hofmeister Effect

    Get PDF
    This study examines the properties of a 4 × 2 matrix of aqueous cations and anions at concentrations up to 8.0 M. The apparent molar water volume, as calculated by subtracting the mass and volume of the ions from the corresponding solution density, was found to exceed the molar volume of ice in many concentrated electrolyte solutions, underscoring the nonideal behavior of these systems. The solvent properties of water were also analyzed by measuring the solubility of diketopiperazine (DKP) in 2.000 M salt solutions prepared from the same ion combinations. Solution rankings for DKP solubility were found to parallel the Hofmeister series for both cations and anions, whereas molar water volume concurred with the cation series only. The results are discussed within the framework of a desolvation energy model that attributes solute-specific changes in equilibria to solute-dependent changes in the free energy of bulk water
    corecore