8 research outputs found

    Health providers' perceptions of clinical trials: lessons from Ghana, Kenya and Burkina Faso.

    Get PDF
    BACKGROUND: Clinical trials conducted in Africa often require substantial investments to support trial centres and public health facilities. Trial resources could potentially generate benefits for routine health service delivery but may have unintended consequences. Strengthening ethical practice requires understanding the potential effects of trial inputs on the perceptions and practices of routine health care providers. This study explores the influence of malaria vaccine trials on health service delivery in Ghana, Kenya and Burkina Faso. METHODS: We conducted: audits of trial inputs in 10 trial facilities and among 144 health workers; individual interviews with frontline providers (n=99) and health managers (n=14); and group discussions with fieldworkers (n=9 discussions). Descriptive summaries were generated from audit data. Qualitative data were analysed using a framework approach. RESULTS: Facilities involved in trials benefited from infrastructure and equipment upgrades, support with essential drugs, access to trial vehicles, and placement of additional qualified trial staff. Qualified trial staff in facilities were often seen as role models by their colleagues; assisting with supportive supervision and reducing facility workload. Some facility staff in place before the trial also received formal training and salary top-ups from the trials. However, differential access to support caused dissatisfaction, and some interviewees expressed concerns about what would happen at the end of the trial once financial and supervisory support was removed. CONCLUSION: Clinical trials function as short-term complex health service delivery interventions in the facilities in which they are based. They have the potential to both benefit facilities, staff and communities through providing the supportive environment required for improvements in routine care, but they can also generate dissatisfaction, relationship challenges and demoralisation among staff. Minimising trial related harm and maximising benefits requires careful planning and engagement of key actors at the outset of trials, throughout the trial and on its' completion

    A Randomized Controlled Phase Ib Trial of the Malaria Vaccine Candidate GMZ2 in African Children

    Get PDF
    BACKGROUND: GMZ2 is a fusion protein of Plasmodium falciparum merozoite surface protein 3 (MSP3) and glutamate rich protein (GLURP) that mediates an immune response against the blood stage of the parasite. Two previous phase I clinical trials, one in naïve European adults and one in malaria-exposed Gabonese adults showed that GMZ2 was well tolerated and immunogenic. Here, we present data on safety and immunogenicity of GMZ2 in one to five year old Gabonese children, a target population for future malaria vaccine efficacy trials. METHODOLOGY/PRINCIPAL FINDINGS: Thirty children one to five years of age were randomized to receive three doses of either 30 µg or 100 µg of GMZ2, or rabies vaccine. GMZ2, adjuvanted in aluminum hydroxide, was administered on Days 0, 28 and 56. All participants received a full course of their respective vaccination and were followed up for one year. Both 30 µg and 100 µg GMZ2 vaccine doses were well tolerated and induced antibodies and memory B-cells against GMZ2 as well as its antigenic constituents MSP3 and GLURP. After three doses of vaccine, the geometric mean concentration of antibodies to GMZ2 was 19-fold (95%CI: 11,34) higher in the 30 µg GMZ2 group than in the rabies vaccine controls, and 16-fold (7,36) higher in the 100 µg GMZ2 group than the rabies group. Geometric mean concentration of antibodies to MSP3 was 2.7-fold (1.6,4.6) higher in the 30 µg group than in the rabies group and 3.8-fold (1.5,9.6) higher in the 100 µg group. Memory B-cells against GMZ2 developed in both GMZ2 vaccinated groups. CONCLUSIONS/SIGNIFICANCE: Both 30 µg as well as 100 µg intramuscular GMZ2 are immunogenic, well tolerated, and safe in young, malaria-exposed Gabonese children. This result confirms previous findings in naïve and malaria-exposed adults and supports further clinical development of GMZ2. TRIAL REGISTRATION: ClinicalTrials.gov NCT00703066

    First field efficacy trial of the ChAd63 MVA ME-TRAP vectored malaria vaccine candidate in 5-17 months old infants and children.

    Get PDF
    BackgroundHeterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified Vaccinia Virus Ankara (MVA) vectored vaccines is a strategy previously shown to provide substantial protective efficacy against P. falciparum infection in United Kingdom adult Phase IIa sporozoite challenge studies (approximately 20-25% sterile protection with similar numbers showing clear delay in time to patency), and greater point efficacy in a trial in Kenyan adults.MethodologyWe conducted the first Phase IIb clinical trial assessing the safety, immunogenicity and efficacy of ChAd63 MVA ME-TRAP in 700 healthy malaria exposed children aged 5-17 months in a highly endemic malaria transmission area of Burkina Faso.ResultsChAd63 MVA ME-TRAP was shown to be safe and immunogenic but induced only moderate T cell responses (median 326 SFU/106 PBMC (95% CI 290-387)) many fold lower than in previous trials. No significant efficacy was observed against clinical malaria during the follow up period, with efficacy against the primary endpoint estimate by proportional analysis being 13.8% (95%CI -42.4 to 47.9) at sixth month post MVA ME-TRAP and 3.1% (95%CI -15.0 to 18.3; p = 0.72) by Cox regression.ConclusionsThis study has confirmed ChAd63 MVA ME-TRAP is a safe and immunogenic vaccine regimen in children and infants with prior exposure to malaria. But no significant protective efficacy was observed in this very highly malaria-endemic setting.Trial registrationClinicalTrials.gov NCT01635647. Pactr.org PACTR201208000404131

    Viral Vector Malaria Vaccines Induce High-Level T Cell and Antibody Responses in West African Children and Infants

    Get PDF
    Heterologous prime-boosting with viral vectors encoding the pre-erythrocytic antigen thrombospondin-related adhesion protein fused to a multiple epitope string (ME-TRAP) induces CD8+ T cell-mediated immunity to malaria sporozoite challenge in European malaria-naive and Kenyan semi-immune adults. This approach has yet to be evaluated in children and infants. We assessed this vaccine strategy among 138 Gambian and Burkinabe children in four cohorts: 2- to 6-year olds in The Gambia, 5- to 17-month-olds in Burkina Faso, and 5- to 12-month-olds and 10-week-olds in The Gambia. We assessed induction of cellular immunity, taking into account the distinctive hematological status of young infants, and characterized the antibody response to vaccination. T cell responses peaked 7 days after boosting with modified vaccinia virus Ankara (MVA), with highest responses in infants aged 10 weeks at priming. Incorporating lymphocyte count into the calculation of T cell responses facilitated a more physiologically relevant comparison of cellular immunity across different age groups. Both CD8+ and CD4+ T cells secreted cytokines. Induced antibodies were up to 20-fold higher in all groups compared with Gambian and United Kingdom (UK) adults, with comparable or higher avidity. This immunization regimen elicited strong immune responses, particularly in young infants, supporting future evaluation of efficacy in this key target age group for a malaria vaccine
    corecore