158 research outputs found
Yielding of Hard-Sphere Glasses during Start-Up Shear
Concentrated hard-sphere suspensions and glasses are investigated with rheometry, confocal microscopy, and Brownian dynamics simulations during start-up shear, providing a link between microstructure, dynamics, and rheology. The microstructural anisotropy is manifested in the extension axis where the maximum of the pair-distribution function exhibits a minimum at the stress overshoot. The interplay between Brownian relaxation and shear advection as well as the available free volume determine the structural anisotropy and the magnitude of the stress overshoot. Shear-induced cage deformation induces local constriction, reducing in-cage diffusion. Finally, a superdiffusive response at the steady state, with a minimum of the time-dependent effective diffusivity, reflects a continuous cage breakup and reformation
From Equilibrium to Steady State: The Transient Dynamics of Colloidal Liquids under Shear
We investigate stresses and particle motion during the start up of flow in a
colloidal dispersion close to arrest into a glassy state. A combination of
molecular dynamics simulation, mode coupling theory and confocal microscopy
experiment is used to investigate the origins of the widely observed stress
overshoot and (previously not reported) super-diffusive motion in the transient
dynamics. A link between the macro-rheological stress versus strain curves and
the microscopic particle motion is established. Negative correlations in the
transient auto-correlation function of the potential stresses are found
responsible for both phenomena, and arise even for homogeneous flows and almost
Gaussian particle displacements.Comment: 24 pages, 14 figures, J. Phys.: Condens. Matter, in pres
- …