62 research outputs found

    Monitoring mitochondrial PO2: the next step

    Get PDF
    PURPOSE OF REVIEW: To fully exploit the concept of hemodynamic coherence in resuscitating critically ill one should preferably take into account information about the state of parenchymal cells. Monitoring of mitochondrial oxygen tension (mitoPO2) has emerged as a clinical means to assess information of oxygen delivery and oxygen utilization at the mitochondrial level. This review will outline the basics of the technique, summarize its development and describe the rationale of measuring oxygen at the mitochondrial level. RECENT FINDINGS: Mitochondrial oxygen tension can be measured by means of the protoporphyrin IX-Triplet State Lifetime Technique (PpIX-TSLT). After validation and use in preclinical animal models, the technique has recently become commercially available in the form of a clinical measuring system. This system has now been used in a number of healthy volunteer studies and is currently being evaluated in studies in perioperative and intensive care patients in several European university hospitals. SUMMARY: PpIX-TSLT is a noninvasive and well tolerated method to assess aspects of mitochondrial functio

    Influence of fluid resuscitation on renal microvascular PO(2 )in a normotensive rat model of endotoxemia

    Get PDF
    INTRODUCTION: Septic renal failure is often seen in the intensive care unit but its pathogenesis is only partly understood. This study, performed in a normotensive rat model of endotoxemia, tests the hypotheses that endotoxemia impairs renal microvascular PO(2 )(μPO(2)) and oxygen consumption (VO(2,ren)), that endotoxemia is associated with a diminished kidney function, that fluid resuscitation can restore μPO(2), VO(2,ren )and kidney function, and that colloids are more effective than crystalloids. METHODS: Male Wistar rats received a one-hour intravenous infusion of lipopolysaccharide, followed by resuscitation with HES130/0.4 (Voluven(®)), HES200/0.5 (HES-STERIL(® )(® )6%) or Ringer's lactate. The renal μPO(2 )in the cortex and medulla and the renal venous PO(2 )were measured by a recently published phosphorescence lifetime technique. RESULTS: Endotoxemia induced a reduction in renal blood flow and anuria, while the renal μPO(2 )and VO(2,ren )remained relatively unchanged. Resuscitation restored renal blood flow, renal oxygen delivery and kidney function to baseline values, and was associated with oxygen redistribution showing different patterns for the different compounds used. HES200/0.5 and Ringer's lactate increased the VO(2,ren), in contrast to HES130/0.4. CONCLUSION: The loss of kidney function during endotoxemia could not be explained by an oxygen deficiency. Renal oxygen redistribution could for the first time be demonstrated during fluid resuscitation. HES130/0.4 had no influence on the VO(2,ren )and restored renal function with the least increase in the amount of renal work

    Evaluating the Prevalence of Cardiac Surgery–associated Acute Kidney Injury After Septal Myectomy Combined With Concomitant Procedures in Obstructive Hypertrophic Cardiomyopathy

    Get PDF
    Objectives: Hypertrophic obstructive cardiomyopathy (HOCM) may be treated by septal myectomy. Cardiac surgery–associated acute kidney injury (CSA-AKI) is a common complication, but little is known about its incidence after septal myectomy. The objectives of this work were to evaluate the prevalence of CSA-AKI after septal myectomy and identify potential perioperative and phenotype-related factors contributing to CSA-AKI. Design: This was a retrospective database analysis with new data analysis. Setting: The study occurred in a single university academic expertise center for septal myectomy HOCM patients. Participants: Data from 238 HOCM patients with septal myectomy operated on between 2005 and 2022 were collected. Interventions: CSA-AKI was stratified according to the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines using measurement of creatinine and urine production. Important HOCM phenotype-related and perioperative factors were analyzed for their possible associations with CSA-AKI. Measurements and Main Results: CSA-AKI occurred in 45% of patients; of these, 55% were classified as KDIGO stage I and the remaining 45% as stage II, with no chronic kidney damage observed. Moreover, there were no phenotypical or perioperative characteristics that were more prevalent in the CSA-AKI cohort. However, the use of beta-blockers and coronary artery disease were more prevalent in the CSA-AKI cohort. Conclusions: CSA-AKI is a common complication after septal myectomy but was transient, and kidney function recovered in all patients.</p

    Measuring Mitochondrial Oxygen Tension during Red Blood Cell Transfusion in Chronic Anemia Patients:A Pilot Study

    Get PDF
    In light of the associated risks, the question has been raised whether the decision to give a blood transfusion should solely be based on the hemoglobin level. As mitochondria are the final destination of oxygen transport, mitochondrial parameters are suggested to be of added value. The aims of this pilot study were to investigate the effect of a red blood cell transfusion on mitochondrial oxygenation as measured by the COMET device in chronic anemia patients and to explore the clinical usability of the COMET monitor in blood transfusion treatments, especially the feasibility of performing measurements in an outpatient setting. To correct the effect of volume load on mitochondrial oxygenation, a red blood cell transfusion and a saline infusion were given in random order. In total, 21 patients were included, and this resulted in 31 observations. If patients participated twice, the order of infusion was reversed. In both the measurements wherein a blood transfusion was given first and wherein 500 mL of 0.9% saline was given first, the median mitochondrial oxygen tension decreased after red blood cell transfusion. The results of this study have strengthened the need for further research into the effect of blood transfusion tissue oxygenation and the potential role of mitochondrial parameters herein.</p

    Description of mitochondrial oxygen tension and its variability in healthy volunteers

    Get PDF
    Objectives Describing mitochondrial oxygenation (mitoPO2) and its within- and between-subject variability over time after 5-aminolevulinic acid (ALA) plaster application in healthy volunteers. Design Prospective cohort study. Setting Measurements were performed in Leiden University Medical Center, the Netherlands. Participants Healthy volunteers enrolled from July to September 2020. Interventions Two ALA plasters were placed parasternal left and right, with a 3-hour time interval, to examine the influence of the calendar time on the value of mitoPO2. We measured mitoPO2 at 4, 5, 7, 10, 28, and 31 hours after ALA plaster 1 application, and at 4, 5, 7, 25, and 28 hours after ALA plaster 2 application. Primary and secondary outcome measures At each time point, five mitoPO2 measurements were performed. Within-subject variability was defined as the standard deviation (SD) of the mean of five measurements per timepoint of a study participant. The between-subject variability was the SD of the mean mitoPO2 value of the study population per timepoint. Results In 16 completed inclusions, median mitoPO2 values and within-subject variability were relatively similar over time at all time points for both plasters. An increase in overall between-subject variability was seen after 25 hours ALA plaster time (19.6 mm Hg vs 23.9 mm Hg after respectively 10 and 25 hours ALA plaster time). Conclusions The mitoPO2 values and within-subject variability remained relatively stable over time in healthy volunteers. An increase in between-subject variability was seen after 25 hours ALA plaster time warranting replacement of the ALA plaster one day after its application. Trial registration ClinicalTrials.gov with trial number NCT04626661.</p

    Description of mitochondrial oxygen tension and its variability in healthy volunteers

    Get PDF
    Objectives Describing mitochondrial oxygenation (mitoPO2) and its within- and between-subject variability over time after 5-aminolevulinic acid (ALA) plaster application in healthy volunteers. Design Prospective cohort study. Setting Measurements were performed in Leiden University Medical Center, the Netherlands. Participants Healthy volunteers enrolled from July to September 2020. Interventions Two ALA plasters were placed parasternal left and right, with a 3-hour time interval, to examine the influence of the calendar time on the value of mitoPO2. We measured mitoPO2 at 4, 5, 7, 10, 28, and 31 hours after ALA plaster 1 application, and at 4, 5, 7, 25, and 28 hours after ALA plaster 2 application. Primary and secondary outcome measures At each time point, five mitoPO2 measurements were performed. Within-subject variability was defined as the standard deviation (SD) of the mean of five measurements per timepoint of a study participant. The between-subject variability was the SD of the mean mitoPO2 value of the study population per timepoint. Results In 16 completed inclusions, median mitoPO2 values and within-subject variability were relatively similar over time at all time points for both plasters. An increase in overall between-subject variability was seen after 25 hours ALA plaster time (19.6 mm Hg vs 23.9 mm Hg after respectively 10 and 25 hours ALA plaster time). Conclusions The mitoPO2 values and within-subject variability remained relatively stable over time in healthy volunteers. An increase in between-subject variability was seen after 25 hours ALA plaster time warranting replacement of the ALA plaster one day after its application. Trial registration ClinicalTrials.gov with trial number NCT04626661.</p

    A simulation of skin mitochondrial PO2 in circulatory shock

    Get PDF
    Circulatory shock is the inadequacy to supply mitochondria with enough oxygen to sustain aerobic energy metabolism. A novel non-invasive bedside measurement was recently introduced to monitor the mitochondrial oxygen tension in the skin (mitoPO2). As the most downstream marker of oxygen balance in the skin, mitoPO2 may provide additional information to improve shock management. However, a physiological basis for the interpretation of mitoPO2 values has not been established yet. In this paper we developed a mathematical model of skin mitoPO2 using a network of parallel microvessels, based on Krogh's cylinder model. The model contains skin blood flow velocity, heterogeneity of blood flow, hematocrit, arteriolar oxygen saturation and mitochondrial oxygen consumption as major variables. The major results of the model show that normal physiological mitoPO2 is in the range of 40-60mmHg. The relationship of mitoPO2 with skin blood flow velocity follows a hyperbolic curve, reaching a plateau at high skin blood flow velocity, suggesting that oxygen balance remains stable whilst peripheral perfusion declines. The model shows that a critical range exists where mitoPO2 rapidly deteriorates if skin perfusion further decreases. The model intuitively shows how tissue hypoxia could occur in the setting of septic shock, due to the profound impact of microcirculatory disturbance on mitoPO2, even at sustained cardiac output. MitoPO2 is the result of a complex interaction between all factors of oxygen delivery and the microcirculation. This mathematical framework can be used to interpret mitoPO2 values in shock, with the potential to enhance personalized clinical trial design.</p

    In Vivo and Ex Vivo Mitochondrial Function in COVID-19 Patients on the Intensive Care Unit

    Get PDF
    Mitochondrial dysfunction has been linked to disease progression in COVID-19 patients. This observational pilot study aimed to assess mitochondrial function in COVID-19 patients at intensive care unit (ICU) admission (T1), seven days thereafter (T2), and in healthy controls and a general anesthesia group. Measurements consisted of in vivo mitochondrial oxygenation and oxygen consumption, in vitro assessment of mitochondrial respiration in platelet-rich plasma (PRP) and peripheral blood mononuclear cells (PBMCs), and the ex vivo quantity of circulating cell-free mitochondrial DNA (mtDNA). The median mitoVO(2) of COVID-19 patients on T1 and T2 was similar and tended to be lower than the mitoVO(2) in the healthy controls, whilst the mitoVO(2) in the general anesthesia group was significantly lower than that of all other groups. Basal platelet (PLT) respiration did not differ substantially between the measurements. PBMC basal respiration was increased by approximately 80% in the T1 group when contrasted to T2 and the healthy controls. Cell-free mtDNA was eight times higher in the COVID-T1 samples when compared to the healthy controls samples. In the COVID-T2 samples, mtDNA was twofold lower when compared to the COVID-T1 samples. mtDNA levels were increased in COVID-19 patients but were not associated with decreased mitochondrial O(2) consumption in vivo in the skin, and ex vivo in PLT or PBMC. This suggests the presence of increased metabolism and mitochondrial damage

    Mitochondrial Oxygenation During Cardiopulmonary Bypass: A Pilot Study

    Get PDF
    ObjectiveAdequate oxygenation is essential for the preservation of organ function during cardiac surgery and cardiopulmonary bypass (CPB). Both hypoxia and hyperoxia result in undesired outcomes, and a narrow window for optimal oxygenation exists. Current perioperative monitoring techniques are not always sufficient to monitor adequate oxygenation. The non-invasive COMET® monitor could be a tool to monitor oxygenation by measuring the cutaneous mitochondrial oxygen tension (mitoPO2). This pilot study examines the feasibility of cutaneous mitoPO2 measurements during cardiothoracic procedures. Cutaneous mitoPO2 will be compared to tissue oxygenation (StO2) as measured by near-infrared spectroscopy.Design and MethodThis single-center observational study examined 41 cardiac surgery patients requiring CPB. Preoperatively, patients received a 5-aminolevulinic acid plaster on the upper arm to enable mitoPO2 measurements. After induction of anesthesia, both cutaneous mitoPO2 and StO2 were measured throughout the procedure. The patients were observed until discharge for the development of acute kidney insufficiency (AKI).ResultsCutaneous mitoPO2 was successfully measured in all patients and was 63.5 [40.0–74.8] mmHg at the surgery start and decreased significantly (p &lt; 0.01) to 36.4 [18.4–56.0] mmHg by the end of the CPB run. StO2 at the surgery start was 80.5 [76.8–84.3]% and did not change significantly. Cross-clamping of the aorta and the switch to non-pulsatile flow resulted in a median cutaneous mitoPO2 decrease of 7 mmHg (p &lt; 0.01). The cessation of the aortic cross-clamping period resulted in an increase of 4 mmHg (p &lt; 0.01). Totally, four patients developed AKI and had a lower preoperative eGFR of 52 vs. 81 ml/min in the non-AKI group. The AKI group spent 32% of the operation time with a cutaneous mitoPO2 value under 20 mmHg as compared to 8% in the non-AKI group.ConclusionThis pilot study illustrated the feasibility of measuring cutaneous mitoPO2 using the COMET® monitor during cardiothoracic procedures. Moreover, in contrast to StO2, mitoPO2 decreased significantly with the increasing CPB run time. Cutaneous mitoPO2 also significantly decreased during the aortic cross-clamping period and increased upon the release of the clamp, but StO2 did not. This emphasized the sensitivity of cutaneous mitoPO2 to detect circulatory and microvascular changes
    • …
    corecore