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 CURRENT
OPINION Monitoring mitochondrial PO2: the next step

Egbert G. Mika, Gianmarco M. Balestraa,b, and Floor A. Harmsa

Purpose of review

To fully exploit the concept of hemodynamic coherence in resuscitating critically ill one should preferably
take into account information about the state of parenchymal cells. Monitoring of mitochondrial oxygen
tension (mitoPO2) has emerged as a clinical means to assess information of oxygen delivery and oxygen
utilization at the mitochondrial level. This review will outline the basics of the technique, summarize its
development and describe the rationale of measuring oxygen at the mitochondrial level.

Recent findings

Mitochondrial oxygen tension can be measured by means of the protoporphyrin IX-Triplet State Lifetime
Technique (PpIX-TSLT). After validation and use in preclinical animal models, the technique has recently
become commercially available in the form of a clinical measuring system. This system has now been used
in a number of healthy volunteer studies and is currently being evaluated in studies in perioperative and
intensive care patients in several European university hospitals.

Summary

PpIX-TSLT is a noninvasive and well tolerated method to assess aspects of mitochondrial function at the
bedside. It allows doctors to look beyond the macrocirculation and microcirculation and to take the oxygen
balance at the cellular level into account in treatment strategies.
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INTRODUCTION

Resuscitating critically ill patients from different
states of shock is a key strategy in critical care but
remains a challenge. Targeting the normalization of
systemic hemodynamic parameters does not lead to
improved outcomes [1–5]. Over the last two deca-
des, considerable attention has been given to the
role of microcirculatory dysfunction as substrate for
such failure, leading to the concept of ‘hemody-
namic coherence’ [6,7].

Hemodynamic coherence is the coherence
between the macrocirculation, microcirculation
and ultimately the parenchymal cells, leading to
an optimal balance of supply and demand of oxygen
and nutrients to the tissues. Loss of hemodynamic
coherence is associated with increased morbidity
and mortality [8–10], as recently confirmed again
in cardiogenic shock patients [11

&

]. The treatment
strategy can have an effect on the occurrence of loss
of hemodynamic coherence [12

&

].
As the ultimate goal of optimizing macrocircula-

tory and microcirculatory hemodynamics is provid-
ing parenchymal cells with an optimal milieu
intérieur, a missing piece of the puzzle remains infor-
mation from the tissue cells. Especially information
from the mitochondria, a key cell organelle and

ultimate destination of oxygen could be very helpful.
Using an optical technique, it is now possible to get
quantitative information about the oxygen tension
in mitochondria and their oxygen utilization.

This review will describe the rationale of taking
into account mitochondrial measurements in peri-
operative and intensive care medicine and summa-
rize the development of a clinically applicable
technique for assessing mitochondrial oxygen ten-
sion and respiration.

MITOCHONDRIAL FUNCTION

Mitochondria are double-membrane organelles that
play pivotal roles in cellular physiology. Our
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understanding of their functions and complex inter-
play with their surrounding has been boosted in the
last two decades and is still growing [13]. Mitochon-
dria are well known as the powerhouses of the
cells but they take part in other important cellular
processes as well. For example, mitochondria are
involved in programmed cell death via opening of
the permeability transition pore and cytochrome c
release [14,15]. Also, mitochondria might play a role
in intracellular calcium homeostasis [16] as they
possess calcium uniporters [17,18] and mitochond-
rially generated reactive oxygen species (ROS) act as
cell-signaling molecules involved in metabolic
adaptation [19], apoptosis [20] and autophagy [21].

Notwithstanding all other important functions,
it is the ATP production by oxidative phosphoryla-
tion that is clinically in the foreground. Mitochon-
dria are the primary consumers of oxygen and are
responsible for approximately 98% of total body
oxygen consumption. Oxygen is ultimately used at
complex IV of the electron transport chain in the
inner mitochondrial membrane. Reduced nicotin-
amide adenine dinucleotide (NADH) and flavin ade-
nine dinucleotide (FADH2), generated in the Krebs
cycle, are transferred from carrier molecules to the
electron transport chain on complex I and II, respec-
tively. The resulting electron transport through the
chain causes protons to be pumped to the intermem-
brane space. This proton pumping causes an electro-
chemical potential over the inner membrane that is
used to convert ADP to ATP by ATP synthase. ATP is
the energy currency of the cells and used for driving
cellular processes like maintaining membrane poten-
tials, protein synthesis and replication.

THREATS TO MITOCHONDRIAL FUNCTION

In the perioperative and intensive care setting,
many factors pose a threat to mitochondrial

integrity and function, as set out in a recent review
[22]. Both internal and external threats can be iden-
tified (Fig. 1). Such altered mitochondrial function,
for example, diminished respiration and ATP-
production, does not necessarily mean dysfunction
because of damage. It can be an adaptive response to
threats, for example, prolonged hypoxia because of
oxygen-conformance or metabolic reprogramming
[23,24], which extends seamless to a dysfunctional
state and responds to resuscitation [25]. The func-
tional consequences of such oxygen-dependent
adaptation for cell and organ functions remain
largely unknown, as well as its effects on microvas-
cular perfusion. Thus, it remains unclear whether
microvascular perfusion disturbances in critical ill-
ness are caused by dysfunction and should be a
target of treatment, or merely are an epiphenome-
non caused by altered cellular metabolism and
diminished oxygen demand. Direct measurement
of aspects of mitochondrial function could, there-
fore, be helpful and mitochondrial oxygen is a
parameter of great interest in this respect.

MEASURING MITOPO2

The measurement of mitoPO2 has been made possi-
ble by the introduction of an optical technique,
called the Protoporphyrin IX – Triplet State Lifetime
Technique (PpIX-TSLT). Protoporphyrin IX is the
final precursor in the heme biosynthetic pathway
and is synthesized in the mitochondria [26] and
shows a bright red prompt fluorescence when illu-
minated with blue or green light. This fluorescence
is, for example, used in photodynamic diagnosis to
visualize tumor during surgical resection [27]. Key in
the development of PpIX-TSLT was the discovery of
the existence of a more long lived red emission from
protoporphyrin IX, called delayed fluorescence [28].
Although prompt fluorescence intensity decays
with a nanosecond lifetime, delayed fluorescence
lasts microseconds to milliseconds.

OXYGEN-DEPENDENT DELAYED
FLUORESCENCE

The delayed fluorescence lifetime is dependent on
the oxygen concentration. Higher oxygen concen-
trations result in a shorter lifetimes, whereas low
oxygen concentrations leads to long lifetimes. The
molecular mechanisms involved in this oxygen-
dependent quenching of delayed fluorescence have
been described elsewhere [29]. In short, photoexci-
tation of PpIX leads to population of an excited
triplet state. Relaxation to the ground state can be
spontaneous and result in the emission of a photon
(delayed fluorescence). Alternatively, the energy can

KEY POINTS

� Mitochondria are important energy-producing organelles
at risk in perioperative and intensive care medicine.

� Mitochondrial oxygen tension can be noninvasively
and safely measured using the optical properties of
protoporphyrin IX.

� Mitochondrial oxygen monitoring is feasible at the
bedside and provides unique parameters
and information.

� Mitochondrial oxygen monitoring provides a new tool
for research in resuscitation, transfusion,
and pathophysiology.

Cardiopulmonary monitoring
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be transferred to an oxygen molecule upon collision
and relaxation occurs without emission of a photon.
More oxygen leads to more collisions and a higher
collision rate, and therefore, results in a faster decay-
ing delayed fluorescence signal (quenching). The
delayed fluorescence lifetime can be converted
to partial pressure of oxygen by the Stern–Volmer
equation [30].

FROM CULTURED CELLS TO IN VIVO

In 2006, the technique for measuring mitochondrial
PO2 by delayed fluorescence of protoporphyrin
IX was first described [28]. In this pivotal study, 5-
aminolevulinc acid (ALA)wasadministered to several
types of cell cultures and the mitochondrial localiza-
tion of ALA-induced PpIX was demonstrated,
together with the presence of oxygen-dependent
delayed fluorescence from cell suspensions. Also,
direct simultaneous measurement of mitoPO2 and
extracellular PO2 showed that only shallow oxygen
gradients exist over the cell membrane. Some years
later, it was demonstrated that the technique could
be extended to in-vivo use [31]. Intravenous admin-
istration of ALA led to detectable oxygen-dependent
delayed fluorescence in rat liver [31] and heart [32].
The technique has been used in several preclinical
pathophysiological studies [23,33–35].

As the technique was feasible in humans, but
systemic administration of ALA was considered an
obstacle, topical administration of ALA was tested
for mitoPO2 measurements (Fig. 2). For practical and

clinical reasons, the skin was considered an ideal
target organ for such measurements. Indeed, topical
application of ALA to skin induced sufficient
oxygen-dependent delayed fluorescence [36] and
allowed local mitoPO2 measurements [37] in rats.
In a pig model, we demonstrated that, unlike tissue
oxygenation measured with near-infrared spectros-
copy, cutaneous mitoPO2 is a sensitive parameter for
detecting the physiologic limit of hemodilution on
an individual level [34]. The skin is especially inter-
esting since, like the gastrointestinal tract [38], it can
be regarded as the canary of the body.

HUMAN USE (CELLULAR OXYGEN
METABOLISM)

A clinical prototype of PpIX-TSLT was successfully
tested in a healthy volunteer study [39] and trig-
gered the development of the COMET system.
COMET is an acronym of Cellular Oxygen METabo-
lism and is a monitoring system developed by Pho-
tonics Healthcare in Utrecht, The Netherlands. The
system is CE-marked and allows, in combination
with its SkinSensor, repetitive noninvasive measure-
ments of mitoPO2 in human skin [40]. To prime the
skin for delayed fluorescence measurements, a ALA-
containing plaster is applied to the skin (Alacare,
photonamic & Co. KG, Pinneberg, Germany).
Although sufficient induction of PpIX by this plaster
takes several hours, it provides a practical way of
applying ALA to the skin in a clinical setting. The
COMET system has by now been tested in several

FIGURE 1. Threats to mitochondria in perioperative and intensive care medicine. �Drugs like statins, metformin, propofol,
amiodarone and many others.
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healthy volunteer studies [41,42
&

] and is currently
being evaluated in clinical studies, both in periop-
erative and intensive care setting [22,40,43].

Importantly, the use of COMET is not limited to
mitoPO2 measurements in skin. The system has
been used to demonstrate the feasibility of assessing
the mucosal oxygenation in the gastrointestinal
system via endoscopy [44

&

]. To this end, the ALA
was administered systemically, via the oral route,
and oxygen-dependent delayed fluorescence was
measured via an optical fiber through the working
channel of an endoscope. The authors propose to
use mitoPO2 measurements as a functional test in
the workup for the diagnosis of chronic mesenteric
ischemia, but since the gut is very sensitive for shock
[45], such an approach might ultimately also be of
benefit for resuscitation purposes in the intensive
care.

THE MYTH OF LOW MITOPO2

As oxygen transport from microcirculation into the
tissue cells is driven by diffusion, it is generally
anticipated, according to the classical oxygen
cascade that mitochondrial oxygen tension should
be very low (several mmHgs) to create a big
enough oxygen gradient [46,47]. However, average

mitoPO2 measured with the PpIX-TSLT technique
appears to be, depending on the specific tissue,
close to microvascular oxygen tension [33,48] and
known values for tissue and/or interstitial oxygen
levels [49,50

&&

]. In fact, mitoPO2 is unlikely to be an
order of magnitude lower than microvascular and
interstitial oxygen tension. First, oxygen does not
disappear stepwise so several mitochondria will see
a PO2 close to intravascular values. Second, larger
vessels (not only capillaries) also contribute to dif-
fusional oxygen delivery [51] so some mitochondria
might see a PO2 higher than the oxygen tension in
the capillaries. Third, the oxygen gradient over the
cell membrane is small [28] and will not cause
mitoPO2 to be substantially lower than interstitial
PO2. Typically reported cutaneous mitoPO2 values
under baseline circumstances are 40–70 mmHg and
considered to be matching well with other measure-
ments in skin [50

&&

]. Importantly, we demonstrated
in both a preclinical [34] and clinical setting [40]
that mitoPO2 provides different information than
hemoglobin saturation-based techniques like near-
infrared spectroscopy. In situations, where visible
light spectroscopy and near-infrared spectroscopy
failed to show any response on a perturbation,
mitoPO2 clearly dropped to indicate cellular
distress.

FIGURE 2. (a) Principle of protoporphyrin IX-Triplet State Lifetime Technique. The pathway by which topical ALA
administration enhances mitochondrial PpIX levels and the principle of delayed fluorescence detection after an excitation pulse
with green (510 nm) light. Emission light is the delayed fluorescence (red light, 630–700 nm) and its lifetime is oxygen-
dependent. (b) PpIX emits delayed fluorescence after excitation by a pulse of green (510 nm) light. The delayed fluorescence
lifetime is oxygen-dependent according to the Stern–Volmer equation (inset), in which kq is the quenching constant and t0 is
the lifetime at zero oxygen. ALA, 5-aminolevulinic acid; CPIII, coporporphyrinogen III; PBG, porphobilinogen; PO2, oxygen
tension; PpIX, protoporphyrin IX; UPIII, urporphyrinogen II. Reproduced with permission from Harms et al. [60].

Cardiopulmonary monitoring
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A POTENTIAL NEW TRANSFUSION
TRIGGER

In current clinical practice, optimization of hemo-
dynamics and tissue oxygen delivery in periopera-
tive and intensive care patients is focusing on the
administration of fluids, blood transfusion and
vasoactive medication, targeting normal systemic
hemodynamic parameters such as blood pressure,
cardiac output, hemoglobin levels and venous satu-
ration. For example, the management of acute ane-
mia is mainly focused on the use of allogeneic blood
transfusion guided on specific hemoglobin levels
instead of a patient’s personal need. Allogeneic
blood transfusion itself is not without risks and
has been shown to be an independent factor for
an increased mortality and morbidity [52,53].

Transfusion guidelines use hemoglobin levels to
indicate the need for blood transfusion. Such guide-
lines are based on data of large groups and incorpo-
rate a safety margin that might lead to unnecessary
transfusion in individual cases. As ultimately the
mitochondria are the target for oxygen delivery, it
seems reasonable to use mitoPO2 as a measure for an
individual’s transfusion need. This presupposition
was fostered by the finding that in hemodiluted pigs
mitoPO2 dropped as a result of ongoing hemodilu-
tion. Reaching the physiological limit of an individ-
ual pig, mitoPO2 acutely dropped and this drop
preceded other signs of inadequate oxygen delivery,
like a rise in serum lactate. Thus, mitoPO2 measure-
ments can be useful as a novel transfusion trigger
for personalized transfusion medicine. Studies that
show that this drop in mitoPO2 can be reversed by
transfusion of autologous blood and that mitoPO2

could indeed be a potential physiological transfu-
sion trigger are under way.

UNRAVELING THE OXYGEN BALANCE

Fluid resuscitation, based on systemic hemody-
namic parameters remains key in the treatment of
sepsis shock. The substantiation for this type of
treatment is based on the hypothesis that the devel-
opment of septic shock and multiorgan failure is
caused by tissue hypoxia because of a higher meta-
bolic rate together with impaired diffusion processes
in the microcirculation [54]. However, many clini-
cal trials have failed to demonstrate benefits of
resuscitation on hemodynamic parameters, such
as blood pressure, central venous pressure, cardiac
output and central venous saturation [3,4,55,56].
This suggests that other mechanism, such as mito-
chondrial dysfunction, also play a role in the path-
ogenesis of sepsis shock. However, the literature
about mitochondrial dysfunction in sepsis shows

conflicting results [57
&&

], most likely because of
the lack of a valid and reliable measurement method
to monitor mitochondrial dysfunction [58].

Therefore, we suggested PpIX-TSLT as a possible
noninvasive monitoring tool for measuring
mitoPO2 and mitochondrial oxygen consumption
(mitoVO2) in vivo. Oxygen consumption is deter-
mined by a dynamic mitoPO2 measurement, mea-
suring mitoPO2 every second for approximately 90 s,
while microvascular oxygen supply is blocked by
applying pressure on the skin with the measuring
probe. mitoVO2 can then be derived from the result-
ing oxygen disappearance curve [59]. We demon-
strated the feasibility to measure the mitoPO2 and
mitoVO2 in an endotoxemic model of acute critical
illness [60]. In this study, we observed a decreased
mitochondrial oxygen consumption in endotoxe-
mic rats independently of the fact whether mitoPO2

was reduced or restored by fluid resuscitation,
suggesting that endotoxemia had a lasting effect
on mitochondrial function, even in the absence of
evident hemodynamic shock.

Another recent study compared the PpIX-TSLT
measurements with a widely used ‘ex vivo’ mito-
chondrial respirometry technique. The same
decrease in mitoPO2 and mitochondrial oxygen
consumption were measured with the PpIX-TSLT
after the induction of sepsis, but ‘ex vivo’ mitochon-
drial function measurements remained unchanged
before and after induction of sepsis. This results are
probably caused by a higher sensitivity of the ‘in
vivo‘ PpIX-TSLT measurements compared with the
classic ‘ex vivo’ measurements.

After demonstrating the feasibility of cutaneous
mitoVO2 measurements, it remained important to
demonstrate that cutaneous mitoPO2 and mitoVO2,
at least to some extent, reflect such mitochondrial
parameters in other vital organs. Therefore, we con-
ducted a study that compared the values and
responses of cutaneous mitoPO2 and mitoVO2 with
liver and gastrointestinal tract [61]. The results
showed that the absolute value of mitoPO2 and
mitoVO2 in the skin may differ from other organs,
but that the trend of a decreased mitoPO2 and
mitoVO2 was observed in all studied organs after
the administration of endotoxin.

CONCLUSION

Mitochondria are the ultimate destination of oxy-
gen delivery. Measurement of oxygen and oxygen
utilization at the mitochondrial level is expected to
be of benefit for guiding therapies aimed at restoring
or optimizing tissue oxygenation and ultimately
organ function. PpIX-TSLT is a noninvasive and
well tolerated technique to measure mitoPO2 and

Monitoring mitochondrial PO2 Mik et al.
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mitoVO2. The COMET system allows bedside use of
this technique, providing a next step in monitoring.
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