5 research outputs found

    Bovine tuberculosis antemortem diagnostic test agreement and disagreement in a naturally infected African cattle population.

    Get PDF
    The interferon-gamma (IFN-γ) assay and single comparative cervical skin test (SCITT) are used to estimate bovine tuberculosis (bTB) prevalence globally. Prevalence estimates of bTB, caused by Mycobacterium bovis, are poorly quantified in many Sub-Saharan African (SSA) cattle populations. Furthermore, antemortem diagnostic performance can vary at different stages of bTB pathogenesis and in different cattle populations. In this study, we aim to explore the level of agreement and disagreement between the IFN-γ assay and SCITT test, along with the drivers for disagreement, in a naturally infected African cattle population. In, 2013, a pastoral cattle population was sampled using a stratified clustered cross-sectional study in Cameroon. A total of 100 pastoral cattle herds in the North West Region (NWR) and the Vina Division (VIN) were sampled totalling 1,448 cattle. Individual animal data and herd-level data were collected, and animals were screened using both the IFN-γ assay and SCITT. Serological ELISAs were used to detect exposure to immunosuppressing co-infections. Agreement analyses were used to compare the performance between the two bTB diagnostic tests, and multivariable mixed-effects logistic regression models (MLR) were developed to investigate the two forms of IFN-γ assay and SCITT binary disagreement. Best agreement using the Cohen's κ statistic, between the SCITT (>2 mm) and the IFN-γ assay implied a ‘fair-moderate' agreement for the NWR [κ = 0.42 (95%CI: 0.31–0.53)] and ‘poor-moderate' for the VIN [κ = 0.33 (95% CI: 0.18–0.47)]. The main test disagreement was the animals testing positive on the IFN-γ assay and negative by the SCITT. From MLR modeling, adults (adults OR: 7.57; older adults OR = 7.21), females (OR = 0.50), bovine leucosis (OR = 2.30), and paratuberculosis positivity (OR = 6.54) were associated with IFN-γ-positive/SCITT-negative disagreement. Subsets to investigate diagnostic test disagreement for being SCITT-positive and IFN-γ-negative also identified that adults (adults OR = 15.74; older adults OR = 9.18) were associated with IFN-γ-negative/SCITT-positive disagreement. We demonstrate that individual or combined use of the IFN-γ assay and SCITT can lead to a large variation in bTB prevalence estimates. Considering that animal level factors were associated with disagreement between the IFN-γ assay and SCITT in this study, future work should further investigate their impact on diagnostic test performance to develop the approaches to improve SSA prevalence estimates

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Unraveling the epidemiology of Mycobacterium bovis using whole-genome sequencing combined with environmental and demographic data

    No full text
    When studying the dynamics of a pathogen in a host population, one crucial question is whether it transitioned from an epidemic (i.e., the pathogen population and the number of infected hosts are increasing) to an endemic stable state (i.e., the pathogen population reached an equilibrium). For slow-growing and slow-evolving clonal pathogens such as Mycobacterium bovis, the causative agent of bovine (or animal) and zoonotic tuberculosis, it can be challenging to discriminate between these two states. This is a result of the combination of suboptimal detection tests so that the actual extent of the pathogen prevalence is often unknown, as well as of the low genetic diversity, which can hide the temporal signal provided by the accumulation of mutations in the bacterial DNA. In recent years, the increased availability, efficiency, and reliability of genomic reading techniques, such as whole-genome sequencing (WGS), have significantly increased the amount of information we can use to study infectious diseases, and therefore, it has improved the precision of epidemiological inferences for pathogens such as M. bovis. In this study, we use WGS to gain insights into the epidemiology of M. bovis in Cameroon, a developing country where the pathogen has been reported for decades. A total of 91 high-quality sequences were obtained from tissue samples collected in four abattoirs, 64 of which were with complete metadata. We combined these with environmental, demographic, ecological, and cattle movement data to generate inferences using phylodynamic models. Our findings suggest M. bovis in Cameroon is slowly expanding its epidemiological range over time; therefore, endemic stability is unlikely. This suggests that animal movement plays an important role in transmission. The simultaneous prevalence of M. bovis in co-located cattle and humans highlights the risk of such transmission being zoonotic. Therefore, using genomic tools as part of surveillance would vastly improve our understanding of disease ecology and control strategies

    Evaluation of SARS-CoV-2 diagnostics and risk factors associated with SARS-CoV-2 infection in Zambia.

    Get PDF
    OBJECTIVES To conduct a diagnostic validation study of SARS-CoV-2 diagnostic kits. METHODS We compared SARS-CoV-2 diagnostic test results from 3 RT-PCR assays used by the Zambian government between November 2020 and February 2021 (Panther Fusion assay, Da An Gene's 2019-nCoV RNA kit and Maccura's PCR Kit) with the Altona RealStar RT-PCR kit which served as the gold standard. We also evaluated results from rapid antigen testing and whether comorbidities were linked with increased odds of infection. RESULTS We recruited 244 participants, 61% (149/244) were positive by at least 1 PCR assay. Da An Gene, Maccura, and Panther Fusion assays had sensitivities of 0.0% (95% confidence interval [CI] 0%-41%), 27.1% (95% CI 15%-42%), and 76% (95% CI 65%-85%), respectively, but specificity was low (<85% for all 3 assays). HIV and TB were not associated with SARS-CoV-2, whereas female sex (OR 0.5 [0.3-0.9], p = 0.026) and chronic pulmonary disease (0.1 [0.0-0.8], p = 0.031) were associated with lower odds of SARS-CoV-2 infection. Of 44 samples, 84% sequenced were Beta variant. CONCLUSIONS The RT-PCR assays evaluated did not meet WHO recommended minimum sensitivity of 80%. Local diagnostic validation studies should be embedded within preparedness plans for future outbreaks to improve the public health response

    Unraveling the epidemiology of Mycobacterium bovis using whole-genome sequencing combined with environmental and demographic data

    Get PDF
    When studying the dynamics of a pathogen in a host population, one crucial question is whether it transitioned from an epidemic (i.e., the pathogen population and the number of infected hosts are increasing) to an endemic stable state (i.e., the pathogen population reached an equilibrium). For slow-growing and slow-evolving clonal pathogens such as Mycobacterium bovis, the causative agent of bovine (or animal) and zoonotic tuberculosis, it can be challenging to discriminate between these two states. This is a result of the combination of suboptimal detection tests so that the actual extent of the pathogen prevalence is often unknown, as well as of the low genetic diversity, which can hide the temporal signal provided by the accumulation of mutations in the bacterial DNA. In recent years, the increased availability, efficiency, and reliability of genomic reading techniques, such as whole-genome sequencing (WGS), have significantly increased the amount of information we can use to study infectious diseases, and therefore, it has improved the precision of epidemiological inferences for pathogens such as M. bovis. In this study, we use WGS to gain insights into the epidemiology of M. bovis in Cameroon, a developing country where the pathogen has been reported for decades. A total of 91 high-quality sequences were obtained from tissue samples collected in four abattoirs, 64 of which were with complete metadata. We combined these with environmental, demographic, ecological, and cattle movement data to generate inferences using phylodynamic models. Our findings suggest M. bovis in Cameroon is slowly expanding its epidemiological range over time; therefore, endemic stability is unlikely. This suggests that animal movement plays an important role in transmission. The simultaneous prevalence of M. bovis in co-located cattle and humans highlights the risk of such transmission being zoonotic. Therefore, using genomic tools as part of surveillance would vastly improve our understanding of disease ecology and control strategies
    corecore