165 research outputs found

    Genetic Discrimination in Health Insurance;Note

    Get PDF

    A 'pockets' approach to addressing financial vulnerability

    Get PDF
    This briefing paper outlines recent evidence on financial vulnerability among families in Scotland, and draws on the Healthier, Wealthier Children case study as an example of action that could help families both at risk of, and experiencing, poverty

    The influence of poverty on children's school experiences : pupils' perspectives

    Get PDF
    This study examined the potential influence of policies and practices on the ability of children from low-income families to participate fully in the school day. Pupils from six schools participated in 71 focus groups and revealed a range of barriers affecting their school experience: transport costs and limited support; clothing costs, stigma and enforcement of school dress codes; material barriers to learning at school and home; concerns about free school meals; missing out on school trips, clubs and events. Findings on school uniform were an important catalyst towards a recent policy change in Scotland in increasing the school clothing grant

    Right Here Right Now (RHRN) pilot study: testing a method of near-real-time data collection on the social determinants of health

    Get PDF
    Background: Informing policy and practice with up-to-date evidence on the social determinants of health is an ongoing challenge. One limitation of traditional approaches is the time-lag between identification of a policy or practice need and availability of results. The Right Here Right Now (RHRN) study piloted a near-real-time data-collection process to investigate whether this gap could be bridged. Methods: A website was developed to facilitate the issue of questions, data capture and presentation of findings. Respondents were recruited using two distinct methods – a clustered random probability sample, and a quota sample from street stalls. Weekly four-part questions were issued by email, Short Messaging Service (SMS or text) or post. Quantitative data were descriptively summarised, qualitative data thematically analysed, and a summary report circulated two weeks after each question was issued. The pilot spanned 26 weeks. Results: It proved possible to recruit and retain a panel of respondents providing quantitative and qualitative data on a range of issues. The samples were subject to similar recruitment and response biases as more traditional data-collection approaches. Participants valued the potential to influence change, and stakeholders were enthusiastic about the findings generated, despite reservations about the lack of sample representativeness. Stakeholders acknowledged that decision-making processes are not flexible enough to respond to weekly evidence. Conclusion: RHRN produced a process for collecting near-real-time data for policy-relevant topics, although obtaining and maintaining representative samples was problematic. Adaptations were identified to inform a more sustainable model of near-real-time data collection and dissemination in the future

    SHARAD radar sounding of the Vastitas Borealis Formation in Amazonis Planitia

    Get PDF
    Amazonis Planitia has undergone alternating episodes of sedimentary and volcanic infilling, forming an interleaved sequence with an upper surface that is very smooth at the kilometer scale. Earlier work interprets the near-surface materials as either young, rough lava flows or ice-rich sediment layers, overlying a basement comprising the Vastitas Borealis Formation and earlier Hesperian plains. Sounding radar profiles across Amazonis Planitia from the Shallow Radar (SHARAD) instrument on the Mars Reconnaissance Orbiter reveal a subsurface dielectric interface that increases in depth toward the north along most orbital tracks. The maximum depth of detection is 100–170 m, depending upon the real dielectric permittivity of the materials, but the interface may persist at greater depth to the north if the reflected energy is attenuated below the SHARAD noise floor. The dielectric horizon likely marks the boundary between sedimentary material of the Vastitas Borealis Formation and underlying Hesperian volcanic plains. The SHARAD-detected interface follows the surface topography across at least one of the large wrinkle ridges in north central Amazonis Planitia. This conformality suggests that Vastitas Borealis sediments, at least in this region, were emplaced prior to compressional tectonic deformation. The change in radar echo strength with time delay is consistent with a loss tangent of 0.005–0.012 for the column of material between the surface and the reflector. These values are consistent with dry, moderate-density sediments or the lower end of the range of values measured for basalts. While a component of distributed ice in a higher-loss matrix cannot be ruled out, we do not find evidence for a dielectric horizon within the Vastitas Borealis Formation that might suggest an abrupt change from an upper dry layer to an ice-rich lower deposit

    Sorption of metals by extracellular polymers from the cyanobacterium Microcystis aeruginosa fo. flos-aquae strain C3-40

    Get PDF
    The sorption of cadmium (II), copper (II), lead (II),manganese (II), and zinc (II) by purified capsularpolysaccharide from the cyanobacterium Microcystis aeruginosafo. flos-aquae strainC3-40 was examined by four methods: equilibriumdialysis, metal removal from solution as detected byvoltammetry, metal accumulation by capsule-containingalginate beads, and calorimetry. The polysaccharide's saturation binding capacities for these metals rangedfrom 1.2 to 4 mmol of metal g-1 of capsule, whichcorresponds to 1 metal equivalent per 2 to 4saccharide subunits of the polymer. Competitionbetween paired metals was tested with simultaneous andsequential additions of metal. Cadmium (II) andlead (II), as well as lead (II) and zinc (II), competedrelatively equally and reciprocally for polymerbinding sites. In contrast, manganese (II) stronglyinhibited the binding of cadmium (II) and lead (II), butitself was not substantially inhibited by either theprior or simultaneous adsorption of cadmium (II) or lead (II).The data are interpreted with respect to overlap ofbinding sites and possibilities of altered polymerconformation or solvation. Calorimetric studies oflead (II) and cadmium (II) association reactions withthe polysaccharide suggest that the enthalpies aresmall and that the reactions may be driven by entropy

    Subsurface structure of Planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings

    Get PDF
    We map the subsurface structure of Planum Boreum using sounding data from the Shallow Radar (SHARAD) instrument onboard the Mars Reconnaissance Orbiter. Radar coverage throughout the 1,000,000- km2 area reveals widespread reflections from basal and internal interfaces of the north polar layered deposits (NPLD). A dome-shaped zone of diffuse reflectivity up to 12 ls (1-km thick) underlies twothirds of the NPLD, predominantly in the main lobe but also extending into the Gemina Lingula lobe across Chasma Boreale. We equate this zone with a basal unit identified in image data as Amazonian sand-rich layered deposits [Byrne, S., Murray, B.C., 2002. J. Geophys. Res. 107, 5044, 12 pp. doi:10.1029/2001JE001615; Fishbaugh, K.E., Head, J.W., 2005. Icarus 174, 444–474; Tanaka, K.L., Rodriguez, J.A.P., Skinner, J.A., Bourke, M.C., Fortezzo, C.M., Herkenhoff, K.E., Kolb, E.J., Okubo, C.H., 2008. Icarus 196, 318–358]. Elsewhere, the NPLD base is remarkably flat-lying and co-planar with the exposed surface of the surrounding Vastitas Borealis materials. Within the NPLD, we delineate and map four units based on the radar-layer packets of Phillips et al. [Phillips, R.J., and 26 colleagues, 2008. Science 320, 1182– 1185] that extend throughout the deposits and a fifth unit confined to eastern Gemina Lingula. We estimate the volume of each internal unit and of the entire NPLD stack (821,000 km3), exclusive of the basal unit. Correlation of these units to models of insolation cycles and polar deposition [Laskar, J., Levrard, B., Mustard, J.F., 2002. Nature 419, 375–377; Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772] is consistent with the 4.2-Ma age of the oldest preserved NPLD obtained by Levrard et al. [Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772]. We suggest a dominant layering mechanism of dust–content variation during accumulation rather than one of lag production during periods of sublimation

    Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars

    Get PDF
    The SHARAD (shallow radar) sounding radar on the Mars Reconnaissance Orbiter detects subsurface reflections in the eastern and western parts of the Medusae Fossae Formation (MFF). The radar waves penetrate up to 580 m of the MFF and detect clear subsurface interfaces in two locations: west MFF between 150 and 155◦ E and east MFF between 209 and 213◦ E. Analysis of SHARAD radargrams suggests that the real part of the permittivity is ∼3.0, which falls within the range of permittivity values inferred from MARSIS data for thicker parts of the MFF. The SHARAD data cannot uniquely determine the composition of the MFF material, but the low permittivity implies that the upper few hundred meters of the MFF material has a high porosity. One possibility is that the MFF is comprised of low-density welded or interlocked pyroclastic deposits that are capable of sustaining the steep-sided yardangs and ridges seen in imagery. The SHARAD surface echo power across the MFF is low relative to typical martian plains, and completely disappears in parts of the east MFF that correspond to the radar-dark Stealth region. These areas are extremely rough at centimeter to meter scales, and the lack of echo power is most likely due to a combination of surface roughness and a low near-surface permittivity that reduces the echo strength from any locally flat regions. There is also no radar evidence for internal layering in any of the SHARAD data for the MFF, despite the fact that tens-of-meters scale layering is apparent in infrared and visible wavelength images of nearby areas. These interfaces may not be detected in SHARAD data if their permittivity contrasts are low, or if the layers are discontinuous. The lack of closely spaced internal radar reflectors suggests that the MFF is not an equatorial analog to the current martian polar deposits, which show clear evidence of multiple internal layers in SHARAD dat
    • …
    corecore