7 research outputs found

    Tibial osteotomy as a mechanical model of primary osteoarthritis in rats

    Get PDF
    This study has presented the first purely biomechanical surgical model of osteoarthritis (OA) in rats, which could be more representative of the human primary disease than intra-articular techniques published previously. A surgical tibial osteotomy (TO) was used to induce degenerative cartilage changes in the medial knee of Sprague-Dawley rats. The presence of osteoarthritic changes in the medial knee compartment of the operated animals was evaluated histologically and through analysis of serum carboxy-terminal telepeptides of type II collagen (CTX-II). In-vivo biomechanical analyses were carried out using a musculoskeletal model of the rat hindlimb to evaluate the loading conditions in the knee pre and post-surgically. Qualitative and quantitative medial cartilage degeneration consistent with OA was found in the knees of the operated animals alongside elevated CTX-II levels and increased tibial compressive loading. The potential avoidance of joint inflammation post-surgically, the maintenance of internal joint biomechanics and the ability to quantify the alterations in joint loading should make this model of OA a better candidate for modeling primary forms of the disease in humans

    Resources for sports engineering education

    Get PDF
    This paper serves as a resource guide for Sports Engineering educators. The paper covers key topics in Sports Engineering, including ball impact, friction, safety and materials. A variety of resource types are presented to reflect modern methods of learning and searching for information, including textbooks, research and review papers, websites and videos. The field could benefit from more resources specifically designated for teaching Sports Engineering, particularly textbooks

    Assessment of Performance Parameters of a Series of Five ‘Historical’ Cricket Bat Designs

    Get PDF
    The performance of five different bat designs, from different eras spanning from 1905 to 2013, was assessed to address the question whether the changes in bat design over the years have resulted in a performance advantage to the batsman. Moment of inertia and ‘freely suspended’ vibration analysis tests were conducted, as these physical properties have been directly associated with rebound characteristics of the bats. Results showed that changes in the blade’s profile such as distribution of the blade’s weight along the edges and closer to the toe have resulted in a clear performance advantage of the newest bats in comparison with older designs. These results add to the weight of evidence in cricket that the game has changed to the benefit of the batsman and additional changes to bat design are conceivable as modern engineering tools are applied to further optimise performance
    corecore