1,175 research outputs found

    QCD evolution of naive-time-reversal-odd fragmentation functions

    Full text link
    We study QCD evolution equations of the first transverse-momentum-moment of the naive-time-reversal-odd fragmentation functions - the Collins function and the polarizing fragmentation function. We find for the Collins function case that the evolution kernel has a diagonal piece same as that for the transversity fragmentation function, while for the polarizing fragmentation function case this piece is the same as that for the unpolarized fragmentation function. Our results might have important implications in the current global analysis of spin asymmetries.Comment: 8 pages,4 figure

    Topological gravitation on graph manifolds

    Full text link
    A model of topological field theory is presented in which the vacuum coupling constants are topological invariants of the four-dimensional spacetime. Thus the coupling constants are theoretically computable, and they indicate the topological structure of our universe.Comment: 3 pages, a talk delivered at the 11th Marcel Grossmann Meeting (2006

    Evolution of twist-3 multi-parton correlation functions relevant to single transverse-spin asymmetry

    Full text link
    We constructed two sets of twist-3 correlation functions that are responsible for generating the novel single transverse-spin asymmetry in the QCD collinear factorization approach. We derive evolution equations for these universal three-parton correlation functions. We calculate evolution kernels relevant to the gluonic pole contributions to the asymmetry at the order of αs\alpha_s. We find that all evolution kernels are infrared safe as they should be and have a lot in common to the DGLAP evolution kernels of unpolarized parton distributions. By solving the evolution equations, we explicitly demonstrate the factorization scale dependence of these twist-3 correlation functions.Comment: 28 pages, 17 figures, new materials and references adde

    Single Transverse-Spin Asymmetries at Large-x

    Get PDF
    The large-xx behavior of the transverse-momentum dependent quark distributions is analyzed in the factorization-inspired perturbative QCD framework, particularly for the naive time-reversal-odd quark Sivers function which is responsible for the single transverse-spin asymmetries in various semi-inclusive hard processes. By examining the dominant hard gluon exchange Feynman diagrams, and using the resulting power counting rule, we find that the Sivers function has power behavior (1−x)4(1-x)^4 at x→1x \to 1, which is one power of (1−x)(1-x) suppressed relative to the unpolarized quark distribution. These power-counting results provide important guidelines for the parameterization of quark distributions and quark-gluon correlations.Comment: 20 pages, 4 figure
    • …
    corecore