13 research outputs found

    Surface Gap Soliton Ground States for the Nonlinear Schr\"{o}dinger Equation

    Full text link
    We consider the nonlinear Schr\"{o}dinger equation (−Δ+V(x))u=Γ(x)∣u∣p−1u(-\Delta +V(x))u = \Gamma(x) |u|^{p-1}u, x∈Rnx\in \R^n with V(x)=V1(x)χ{x1>0}(x)+V2(x)χ{x1<0}(x)V(x) = V_1(x) \chi_{\{x_1>0\}}(x)+V_2(x) \chi_{\{x_1<0\}}(x) and Γ(x)=Γ1(x)χ{x1>0}(x)+Γ2(x)χ{x1<0}(x)\Gamma(x) = \Gamma_1(x) \chi_{\{x_1>0\}}(x)+\Gamma_2(x) \chi_{\{x_1<0\}}(x) and with V1,V2,Γ1,Γ2V_1, V_2, \Gamma_1, \Gamma_2 periodic in each coordinate direction. This problem describes the interface of two periodic media, e.g. photonic crystals. We study the existence of ground state H1H^1 solutions (surface gap soliton ground states) for 0<minâĄÏƒ(−Δ+V)0<\min \sigma(-\Delta +V). Using a concentration compactness argument, we provide an abstract criterion for the existence based on ground state energies of each periodic problem (with V≡V1,Γ≡Γ1V\equiv V_1, \Gamma\equiv \Gamma_1 and V≡V2,Γ≡Γ2V\equiv V_2, \Gamma\equiv \Gamma_2) as well as a more practical criterion based on ground states themselves. Examples of interfaces satisfying these criteria are provided. In 1D it is shown that, surprisingly, the criteria can be reduced to conditions on the linear Bloch waves of the operators −d2dx2+V1(x)-\tfrac{d^2}{dx^2} +V_1(x) and −d2dx2+V2(x)-\tfrac{d^2}{dx^2} +V_2(x).Comment: definition of ground and bound states added, assumption (H2) weakened (sign changing nonlinearity is now allowed); 33 pages, 4 figure

    Two-soliton collisions in a near-integrable lattice system

    Full text link
    We examine collisions between identical solitons in a weakly perturbed Ablowitz-Ladik (AL) model, augmented by either onsite cubic nonlinearity (which corresponds to the Salerno model, and may be realized as an array of strongly overlapping nonlinear optical waveguides), or a quintic perturbation, or both. Complex dependences of the outcomes of the collisions on the initial phase difference between the solitons and location of the collision point are observed. Large changes of amplitudes and velocities of the colliding solitons are generated by weak perturbations, showing that the elasticity of soliton collisions in the AL model is fragile (for instance, the Salerno's perturbation with the relative strength of 0.08 can give rise to a change of the solitons' amplitudes by a factor exceeding 2). Exact and approximate conservation laws in the perturbed system are examined, with a conclusion that the small perturbations very weakly affect the norm and energy conservation, but completely destroy the conservation of the lattice momentum, which is explained by the absence of the translational symmetry in generic nonintegrable lattice models. Data collected for a very large number of collisions correlate with this conclusion. Asymmetry of the collisions (which is explained by the dependence on the location of the central point of the collision relative to the lattice, and on the phase difference between the solitons) is investigated too, showing that the nonintegrability-induced effects grow almost linearly with the perturbation strength. Different perturbations (cubic and quintic ones) produce virtually identical collision-induced effects, which makes it possible to compensate them, thus finding a special perturbed system with almost elastic soliton collisions.Comment: Phys. Rev. E, in pres

    Doubly periodic waves of a discrete nonlinear Schr\"odinger system with saturable nonlinearity

    Full text link
    A system of two discrete nonlinear Schr\"odinger equations of the Ablowitz-Ladik type with a saturable nonlinearity is shown to admit a doubly periodic wave, whose long wave limit is also derived. As a by-product, several new solutions of the elliptic type are provided for NLS-type discrete and continuous systems.Comment: 12 pages, to appear, Journal of nonlinear mathematical physic

    Stability of dark solitons in a Bose-Einstein condensate trapped in an optical lattice

    Get PDF
    We investigate the stability of dark solitons (DSs) in an effectively one-dimensional Bose-Einstein condensate in the presence of the magnetic parabolic trap and an optical lattice (OL). The analysis is based on both the full Gross-Pitaevskii equation and its tight-binding approximation counterpart (discrete nonlinear Schr{\"o}dinger equation). We find that DSs are subject to weak instabilities with an onset of instability mainly governed by the period and amplitude of the OL. The instability, if present, sets in at large times and it is characterized by quasi-periodic oscillations of the DS about the minimum of the parabolic trap.Comment: Typo fixed in Eq. (1): cos^2 -> sin^

    Bessel X waves in two- and three-dimensional bidispersive optical systems

    No full text
    We show that new families of two- and three-dimensional nondiffracting Bessel X waves are possible in linear bidispersive optical systems. These X waves can be observed in both bulk and waveguide configurations as well as in photonic crystal lattices that simultaneously exhibit normal and anomalous dispersive-diffractive properties in different spatial or spatiotemporal coordinates. © 2004 Optical Society of America

    Three-dimensional vortex solitons in self-defocusing media

    No full text
    The existence and robustness of dark vortices in bi-dispersive and/or normally dispersive self-defocusing nonlinear media is demonstrated. The underlying equation is the bi-dispersive three-dimensional nonlinear Schrodinger equation. These solutions can be considered as extensions of two-dimensional dark vortex solitons which, along the third dimension, remain localized due to the interplay between diffraction and nonlinearity. Such vortex solitons can be observed in optical media with normal dispersion, normal diffraction, and defocusing nonlinearity
    corecore