2 research outputs found

    REMD Simulations Reveal the Dynamic Profile and Mechanism of Action of Deleterious, Rescuing, and Stabilizing Perturbations to NBD1 from CFTR

    No full text
    Cystic Fibrosis (CF) is a lethal, genetic disease caused by mutations to the CFTR chloride channel. The most common CF causing mutation is the deletion of F508 from the first Nucleotide Binding Domain (F508del-NBD1). This mutation leads to a thermally unstable domain and a misfolded, nonfunctioning CFTR. Replica Exchange MD simulations were used to simulate seven NBD1 constructs including wt and F508del-NBD1 both alone and in the presence of known rescuing mutations as well as F508del-NBD1 in complex with a known small (ligand) stabilizer. Analyzing the resulting trajectories suggests that differences in the biochemical properties of the constructs result from local and coupled differences in their dynamic profiles. A comparative analysis of these profiles as well as of the resulting trajectories reveals how the different perturbations exert their deleterious, rescuing, and stabilizing effects on NBD1. These simulations may therefore be useful for the design and mechanism-of-action analysis of new NBD1 stabilizers

    Design of Compact Biomimetic Cellulose Binding Peptides as Carriers for Cellulose Catalytic Degradation

    No full text
    The conversion of biomass into biofuels can reduce the strategic vulnerability of petroleum-based systems and at the same time have a positive effect on global climate issues. Lignocellulose is the cheapest and most abundant source of biomass and consequently has been widely considered as a source for liquid fuel. However, despite ongoing efforts, cellulosic biofuels are still far from commercial realization, one of the major bottlenecks being the hydrolysis of cellulose into simpler sugars. Inspired by the structural and functional modularity of cellulases used by many organisms for the breakdown of cellulose, we propose to mimic the cellulose binding domain (CBD) and the catalytic domain of these proteins by small molecular entities. Multiple copies of these mimics could subsequently be tethered together to enhance hydrolytic activity. In this work, we take the first step toward achieving this goal by applying computational approaches to the design of efficient, cost-effective mimetics of the CBD. The design is based on low molecular weight peptides that are amenable to large-scale production. We provide an optimized design of four short (i.e., ∼18 residues) peptide mimetics based on the three-dimensional structure of a known CBD and demonstrate that some of these peptides bind cellulose as well as or better than the full CBD. The structures of these peptides were studied by circular dichroism and their interactions with cellulose by solid phase NMR. Finally, we present a computational strategy for predicting CBD/peptide–cellulose binding free energies and demonstrate its ability to provide values in good agreement with experimental data. Using this computational model, we have also studied the dissociation pathway of the CBDs/peptides from the surface of cellulose
    corecore