2,088 research outputs found

    Adiabatic hyperspherical study of triatomic helium systems

    Full text link
    The 4He3 system is studied using the adiabatic hyperspherical representation. We adopt the current state-of-the-art helium interaction potential including retardation and the nonadditive three-body term, to calculate all low-energy properties of the triatomic 4He system. The bound state energies of the 4He trimer are computed as well as the 4He+4He2 elastic scattering cross sections, the three-body recombination and collision induced dissociation rates at finite temperatures. We also treat the system that consists of two 4He and one 3He atoms, and compute the spectrum of the isotopic trimer 4He2 3He, the 3He+4He2 elastic scattering cross sections, the rates for three-body recombination and the collision induced dissociation rate at finite temperatures. The effects of retardation and the nonadditive three-body term are investigated. Retardation is found to be significant in some cases, while the three-body term plays only a minor role for these systems.Comment: 24 pages 6 figures Submitted to Physical Review

    Strong and radiative decays of the Ds0*(2317) meson in the DK-molecule picture

    Full text link
    We consider a possible interpretation of the new charm-strange meson Ds0*(2317) as a hadronic molecule - a bound state of D and K mesons. Using an effective Lagrangian approach we calculate the strong Ds0* to Ds pi0 and radiative Ds0* to Ds* gamma decays. A new impact related to the DK molecular structure of the Ds0*(2317) meson is that the presence of u(d) quarks in the D and K mesons gives rise to a direct strong isospin-violating transition Ds0* to Ds pi0 in addition to the decay mechanism induced by eta-pi0 mixing considered previously. We show that the direct transition dominates over the eta-pi0 mixing transition in the Ds0* to Ds pi0 decay. Our results for the partial decay widths are consistent with previous calculations.Comment: 22 pages, 4 figures, accepted for publication in Phys. Rev.

    The structure of the atomic helium trimers: Halos and Efimov states

    Get PDF
    The Faddeev equations for the atomic helium-trimer systems are solved numerically with high accuracy both for the most sophisticated realistic potentials available and for simple phenomenological potentials. An efficient numerical procedure is described. The large-distance asymptotic behavior, crucial for weakly bound three-body systems, is described almost analytically for arbitrary potentials. The Efimov effect is especially considered. The geometric structures of the bound states are quantitatively investigated. The accuracy of the schematic models and previous computations is comparable, i.e. within 20% for the spatially extended states and within 40% for the smaller ^4He-trimer ground state.Comment: 32 pages containing 7 figures and 6 table

    Production of three-body Efimov molecules in an optical lattice

    Full text link
    We study the possibility of associating meta-stable Efimov trimers from three free Bose atoms in a tight trap realised, for instance, via an optical lattice site or a microchip. The suggested scheme for the production of these molecules is based on magnetically tunable Feshbach resonances and takes advantage of the Efimov effect in three-body energy spectra. Our predictions on the energy levels and wave functions of three pairwise interacting 85Rb atoms rely upon exact solutions of the Faddeev equations and include the tightly confining potential of an isotropic harmonic atom trap. The magnetic field dependence of these energy levels indicates that it is the lowest energetic Efimov trimer state that can be associated in an adiabatic sweep of the field strength. We show that the binding energies and spatial extents of the trimer molecules produced are comparable, in their magnitudes, to those of the associated diatomic Feshbach molecule. The three-body molecular state follows Efimov's scenario when the pairwise attraction of the atoms is strengthened by tuning the magnetic field strength.Comment: 21 pages, 8 figures (final version

    Small mass- and trap-imbalanced two-component Fermi systems

    Full text link
    Motivated by the prospect of optical lattice experiments with two-component Fermi gases consisting of different atomic species such as Li and K, we calculate the energies for N fermions under harmonic confinement as a function of the mass- and trap-imbalance, i.e., as a function of the ratio between the masses and frequencies of species one and two, using microscopic approaches. Our energies for N=2 through 6 can be used to determine the energetically most favorable configuration for a given number of atoms per species of a deep lattice in which each lattice site is approximately harmonic and in which tunneling between neighboring sites can be neglected. Furthermore, our energies determine one of the input parameters, namely the onsite interaction strength, of the corresponding lattice Hamiltonian. We also determine and interpret the excitation gap for unequal-mass systems with up to N=13 atoms for equal oscillator lengths.Comment: 13 pages, 9 figure

    BEC-BCS Crossover of a Trapped Two-Component Fermi Gas with Unequal Masses

    Full text link
    We determine the energetically lowest lying states in the BEC-BCS crossover regime of s-wave interacting two-component Fermi gases under harmonic confinement by solving the many-body Schrodinger equation using two distinct approaches. Essentially exact basis set expansion techniques are applied to determine the energy spectrum of systems with N=4 fermions. Fixed-node diffusion Monte Carlo methods are applied to systems with up to N=20 fermions, and a discussion of different guiding functions used in the Monte Carlo approach to impose the proper symmetry of the fermionic system is presented. The energies are calculated as a function of the s-wave scattering length a_s for N=2-20 fermions and different mass ratios \kappa of the two species. On the BEC and BCS sides, our energies agree with analytically-determined first-order correction terms. We extract the scattering length and the effective range of the dimer-dimer system up to \kappa = 20. Our energies for the strongly-interacting trapped system in the unitarity regime show no shell structure, and are well described by a simple expression, whose functional form can be derived using the local density approximation, with one or two parameters. The universal parameter \xi for the trapped system for various \kappa is determined, and comparisons with results for the homogeneous system are presented.Comment: 11 pages, 6 figures, extended versio

    Analytic Confinement and Regge Trajectories

    Full text link
    A simple relativistic quantum field model with the Yukawa-type interaction is considered to demonstrate that the analytic confinement of the constituent ("quarks") and carrier ("gluons") particles explains qualitatively the basic dynamical properties of the spectrum of mesons considered as two-particle stable bound states of quarks and gluons: the quarks and gluons are confined, the glueballs represent bound states of massless gluons, the masses of mesons are larger than the sum of the constituent quark masses and the Regge trajectories of mesonic orbital excitations are almost linear.Comment: RevTeX, 16 pages, 3 figures and 2 table

    Illustration of universal relations for trapped four-fermion system with arbitrary s-wave scattering length

    Full text link
    A two-component four-fermion system with equal masses, interspecies s-wave scattering length a and vanishing intraspecies interactions under external spherically symmetric harmonic confinement is considered. Using a correlated Gaussian basis set expansion approach, we determine the energies and various structural properties of the energetically lowest-lying gas-like state throughout the crossover for various ranges of the underlying two-body potential. Extrapolating to the zero-range limit, our numerical results show explicitly that the total energy, the trap energy as well as certain aspects of the pair distribution function and of the momentum distribution are related through the so-called integrated contact intensity I(a). Furthermore, it is shown explicitly that the total energy and the trap energy are related through a generalized virial theorem that accounts for a non-zero range.Comment: 9 figures with several subfigure

    Collisional stability of a three-component degenerate Fermi gas

    Full text link
    We report on the creation of a degenerate Fermi gas consisting of a balanced mixture of atoms in three different hyperfine states of 6^6Li. This new system consists of three distinguishable Fermions with different and tunable interparticle scattering lengths a12a_{12}, a13a_{13} and a23a_{23}. We are able to prepare samples containing 51045 \cdot 10^4 atoms in each state at a temperature of about 215215 nK, which corresponds to T/TF0.37T/T_F \approx 0.37. We investigated the collisional stability of the gas for magnetic fields between 0 and 600 G and found a prominent loss feature at 130 G. From lifetime measurements we determined three-body loss coefficients, which vary over nearly three orders of magnitude

    On orientational relief of inter-molecular potential and the structure of domain walls in fullerite C60

    Full text link
    A simple planar model for an orientational ordering of threefold molecules on a triangular lattice modelling a close-packed (111) plane of fullerite is considered. The system has 3-sublattice ordered ground state which includes 3 different molecular orientations. There exist 6 kinds of orientational domains, which are related with a permutation or a mirror symmetry. Interdomain walls are found to be rather narrow. The model molecules have two-well orientational potential profiles, which are slightly effected by a presence of a straight domain wall. The reason is a stronger correlation between neighbour molecules in triangular lattice versus previously considered square lattice A considerable reduction (up to one order) of orientational interwell potential barrier is found in the core regions of essentially two-dimentional potential defects, such as a three-domain boundary or a kink in the domain wall. For ultimately uncorrelated nearest neighbours the height of the interwell barrier can be reduced even by a factor of 100.Comment: 11 pages, 13 figures, LaTeX, to appear in Low Temperature Physic
    corecore