2 research outputs found

    1 mJ pulse bursts from a Yb-doped fiber amplifier

    Get PDF
    We demonstrate burst-mode operation of a polarization-maintaining Yb-doped fiber amplifier capable of generating 60 μJ pulses within bursts of 11 pulses with extremely uniform energy distribution facilitated by a novel feedback mechanism shaping the seed of the burst-mode amplifier. The burst energy can be scaled up to 1 mJ, comprising 25 pulses with 40 μJ average individual energy. The amplifier is synchronously pulse pumped to minimize amplified spontaneous emission between the bursts. Pulse propagation is entirely in fiber and fiber-integrated components until the grating compressor, which allows for highly robust operation. The burst repetition rate is set to 1 kHz and spacing between individual pulses is 10 ns. The 40 μJ pulses are externally compressible to a full width at halfmaximum of 600 fs. However, due to the substantial pedestal of the compressed pulses, the effective pulse duration is longer, estimated to be 1.2 ps. © 2012 Optical Society of America

    Single solid source precursor route to the synthesis of MOCVD Cu-Cd-S thin films

    No full text
    Bis-(morpholinodithiato-s,s')-Cu-Cd was synthesized from appropriate reagents as a single solid source precursor and characterized using particle induced x-ray emission (PIXE), Fourier transform infrared (FTIR) spectroscopy and differential thermal analysis (DTA). Cu-Cd-S thin films were deposited on sodalime glass substrate using MOCVD technique at temperatures in the range 360 °C–450 °C. The films were further characterized using Rutherford backscattering spectroscopy (RBS), x-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy and four-point probe technique. PIXE revealed that the synthesized precursor contained the expected elements which led to the successful deposition of the Cu-Cd-S thin films. FTIR ascertained that the organic ligand actually attached to the metals. DTA analysis showed that the synthesized precursor was thermally stable and could pyrolyzed around 300 and 500 °C. RBS of the deposited films showed that the stoichiometry and the thickness depended on deposition temperature. XRD analysis revealed that the films deposited at 360 and 380 °C are amorphous while those deposited at 400 °C to 450 °C showed peaks, which supported the possible co-existence of CuS and CdS as Cu-Cd-S, with an improvement in the crystallinity as substrate temperature increased. SEM showed that the films are uniform and crack-free, in which the morphology strongly depended on substrate temperature. Optical analysis revealed that the films have high absorbance in the UV region and high transmittance in the visible and near infrared region, in which direct band gap energy of 2.36 to 2.14 eV was obtained as deposition temperature increased. Other optical parameters such as Urbach energy, refractive index, extinction coefficient, dielectric constant also increased as the deposition temperature increased. Electrical analysis showed that resistivity is temperature dependent as it reduced as deposition temperature increased.http://iopscience.iop.org/journal/2053-15912020-09-13hj2020Physic
    corecore