75 research outputs found

    Suarez Residence

    Get PDF

    PTPRF is disrupted in a patient with syndromic amastia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The presence of mammary glands distinguishes mammals from other organisms. Despite significant advances in defining the signaling pathways responsible for mammary gland development in mice, our understanding of human mammary gland development remains rudimentary. Here, we identified a woman with bilateral amastia, ectodermal dysplasia and unilateral renal agenesis. She was found to have a chromosomal balanced translocation, 46,XX,t(1;20)(p34.1;q13.13). In addition to characterization of her clinical and cytogenetic features, we successfully identified the interrupted gene and studied its consequences.</p> <p>Methods</p> <p>Characterization of the breakpoints was performed by molecular cytogenetic techniques. The interrupted gene was further analyzed using quantitative real-time PCR and western blotting. Mutation analysis and high-density SNP array were carried out in order to find a pathogenic mutation. Allele segregations were obtained by haplotype analysis.</p> <p>Results</p> <p>We enabled to identify its breakpoint on chromosome 1 interrupting the <it>protein tyrosine receptor type F gene </it>(<it>PTPRF</it>). While the patient's mother and sisters also harbored the translocated chromosome, their non-translocated chromosomes 1 were different from that of the patient. Although a definite pathogenic mutation on the paternal allele could not be identified, <it>PTPRF</it>'s RNA and protein of the patient were significantly less than those of her unaffected family members.</p> <p>Conclusions</p> <p>Although <it>ptprf </it>has been shown to involve in murine mammary gland development, no evidence has incorporated <it>PTPRF </it>in human organ development. We, for the first time, demonstrated the possible association of <it>PTPRF </it>with syndromic amastia, making it a prime candidate to investigate for its spatial and temporal roles in human breast development.</p

    Chemistry and Interconversion of Complex Trichothecenes

    Get PDF
    The trichothecenes are a ubiquitous group of toxic fungal sesquiterpenoids. Previous studies have shown that the 12,13-epoxide present in the trichothecenes may be crucial for biological activity. To gain further insight into the biological role of the epoxide, successful employment of the Sharpless deoxygenation protocol has been achieved after extensive model studies. This procedure gave the 12,13-exomethylene compounds (119) and (121) from the corresponding epoxytrichothecenes, namely triacetoxyscirpene (63) and triacetyldeoxynivalenol (120). In an extension to this work, Sharpless deoxygenation furnished the key intermediate, olefin (124), which was used to synthesise the 12,13-epi-epoxytrichothecene (128) via ozonolysis and reaction of the derived norketone (125) with dimethylsulphonium methylide. Both the Sharpless deoxygenation product (119) and the epi-epoxytrichothecene (128) were found to be essentially non-toxic, thus demonstrating for the first time the necessary presence of the epoxide and its stereochemical definition. Further work has led to methodology for the provision of less readily available trichothecenes. To this end, deoxynivalenol (23) has been successfully synthesised from one of our culture products, anguidine (9), via another naturally occurring trichothecene, calonectrin (5). This methodology involved selective removal of the C-4 oxygen functionality, selective allylic oxidation at C-8, to establish the enone system, and introduction of the C-7 hydroxyl moiety

    Ever Newer Ways to Mean: Authoring Pedagogical Change in Secondary Subject-Area Classrooms

    No full text

    Mechanical Seal Application - A User's Viewpoint

    No full text
    TutorialPg. 171-185.The purpose of this paper is to present some user guidelines for the selection, operation, and maintenance of mechanical end face seals in chemical, petrochemical, and petroleum operations. Though the exact seal requirements for a similar service may differ between the authors, we are all looking for a means of improving our mechanical seal reliability. For the majority of services, there are several seal vendors and installation schemes that will work equally well for that service, while for certain services, only one seal vendor may excel with a limited installation scheme variation. The reasons that a particular plant uses a certain seal for their general plant service relates more to the local service representative, parts availability, materials offered, seal arrangement or seal type. Conversely, your plant should not be stuck in the dilemma that the plant preferred seal has to fit all applications because of spare parts of “maintenance know-how to work with this seal.” Every seal design has strong and weak design points. Learn what they are and know how to best apply and maintain your plant seals
    • …
    corecore