6 research outputs found

    Double sampling of a faecal immunochemical test is not superior to single sampling for detection of colorectal neoplasia: a colonoscopy controlled prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A single sampled faecal immunochemical test (FIT) has moderate sensitivity for colorectal cancer and advanced adenomas. Repeated FIT sampling could improve test sensitivity. The aim of the present study is to determine whether any of three different strategies of double FIT sampling has a better combination of sensitivity and specificity than single FIT sampling.</p> <p>Methods</p> <p>Test performance of single FIT sampling in subjects scheduled for colonoscopy was compared to double FIT sampling intra-individually. Test positivity of double FIT sampling was evaluated in three different ways: 1) "one of two FITs+" when at least one out of two measurements exceeded the cut-off value, 2) "two of two FITs+" when both measurements exceeded the cut-off value, 3) "mean of two FITs+" when the geometric mean of two FITs exceeded the cut-off value. Receiver operator curves were calculated and sensitivity of single and the three strategies of double FIT sampling were compared at a fixed level of specificity.</p> <p>Results</p> <p>In 124 of 1096 subjects, screen relevant neoplasia (SRN) were found (i.e. early stage CRC or advanced adenomas). At any cut-off, "two of two FITs+" resulted in the lowest and "one of two FITs+" in the highest sensitivity for SRN (range 35-44% and 42%-54% respectively). ROC's of double FIT sampling were similar to single FIT sampling. At specificities of 85/90/95%, sensitivity of any double FIT sampling strategy did not differ significantly from single FIT (p-values 0.07-1).</p> <p>Conclusion</p> <p>At any cut off, "one of two FITs+" is the most sensitive double FIT sampling strategy. However, at a given specificity level, sensitivity of any double FIT sampling strategy for SRN is comparable to single FIT sampling at a different cut-off value. None of the double FIT strategies has a superior combination of sensitivity and specificity over single FIT.</p

    Varicellovirus UL49.5 Proteins Differentially Affect the Function of the Transporter Associated with Antigen Processing, TAP

    Get PDF
    Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I–restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL49.5 proteins block TAP as well, these data indicate that UL49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL49.5. Taken together, these results classify the UL49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms

    VIII. Literatur

    No full text
    corecore