454 research outputs found

    Exocytotic fusion pores are composed of both lipids and proteins.

    Get PDF
    During exocytosis, fusion pores form the first aqueous connection that allows escape of neurotransmitters and hormones from secretory vesicles. Although it is well established that SNARE proteins catalyze fusion, the structure and composition of fusion pores remain unknown. Here, we exploited the rigid framework and defined size of nanodiscs to interrogate the properties of reconstituted fusion pores, using the neurotransmitter glutamate as a content-mixing marker. Efficient Ca(2+)-stimulated bilayer fusion, and glutamate release, occurred with approximately two molecules of mouse synaptobrevin 2 reconstituted into ∼6-nm nanodiscs. The transmembrane domains of SNARE proteins assumed distinct roles in lipid mixing versus content release and were exposed to polar solvent during fusion. Additionally, tryptophan substitutions at specific positions in these transmembrane domains decreased glutamate flux. Together, these findings indicate that the fusion pore is a hybrid structure composed of both lipids and proteins.We thank Gerhard Wagner for providing the MSP∆1D1H4-H6 plasmid. This study was supported by a grant from the US National Institutes of Health (MH061876). H.B. is supported by a postdoctoral fellowship from Human Frontier Science Program. B.C. and M.P.G are supported by funding from the US National Institutes of Health (R01 GM084140). P.J. is supported by Kidney Research UK. J.M.E. is supported by the Biotechnology and Biological Sciences Research Council (BB/J018236/1) and Kidney Research UK. E.R.C. is supported as an Investigator of the Howard Hughes Medical Institute.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nsmb.314

    Functional analysis of the interface between the tandem C2 domains of synaptotagmin-1.

    Get PDF
    C2 domains are widespread motifs that often serve as Ca(2+)-binding modules; some proteins have more than one copy. An open issue is whether these domains, when duplicated within the same parent protein, interact with one another to regulate function. In the present study, we address the functional significance of interfacial residues between the tandem C2 domains of synaptotagmin (syt)-1, a Ca(2+) sensor for neuronal exocytosis. Substitution of four residues, YHRD, at the domain interface, disrupted the interaction between the tandem C2 domains, altered the intrinsic affinity of syt-1 for Ca(2+), and shifted the Ca(2+) dependency for binding to membranes and driving membrane fusion in vitro. When expressed in syt-1 knockout neurons, the YHRD mutant yielded reductions in synaptic transmission, as compared with the wild-type protein. These results indicate that physical interactions between the tandem C2 domains of syt-1 contribute to excitation-secretion coupling.This study was supported by a grant from the NIH (MH061876). C.S.E. was supported by a PhRMA Foundation predoctoral fellowship and by a UW–Madison Molecular and Cellular Pharmacology Training Grant (5T32-GM008688). R.B.S. was supported by an NIH grant (AR063634). P.J. and J.M.E. were funded by Kidney Research UK, and J.M.E. was funded by the Biotechnology and Biological Sciences Research Council (Grant BB/J018236/1). E.R.C. is an investigator of the Howard Hughes Medical Institute.This is the final version of the article. It first appeared from the American Society for Cell Biology via http://dx.doi.org/10.1091/mbc.E15-07-050

    Ferroelectricity in Perovskitelike NaCaF3 Predicted Ab Initio

    Get PDF
    The ability of zero-stress simulations, using Gordon-Kim pair potentials, to describe the structures and transformations of known fluoride-based perovskites is demonstrated for the case of KCaF3. When K+ is replaced by Na+ a new ferroelectric crystal isomorphous with LiNbO3 is predicted. The equivalent relationships of the ferroelectric lithium niobate structure with the perovskite and antiperovskite structures are examined. A polarization of 21 jµC/cm2 at room temperature and a transition temperature of 550 K are predicted for NaCaF3. Surface effects are examined in simulations of a 1080-ion cluster

    Sar1 GTPase Activity Is Regulated by Membrane Curvature.

    Get PDF
    The majority of biosynthetic secretory proteins initiate their journey through the endomembrane system from specific subdomains of the endoplasmic reticulum. At these locations, coated transport carriers are generated, with the Sar1 GTPase playing a critical role in membrane bending, recruitment of coat components, and nascent vesicle formation. How these events are appropriately coordinated remains poorly understood. Here, we demonstrate that Sar1 acts as the curvature-sensing component of the COPII coat complex and highlight the ability of Sar1 to bind more avidly to membranes of high curvature. Additionally, using an atomic force microscopy-based approach, we further show that the intrinsic GTPase activity of Sar1 is necessary for remodeling lipid bilayers. Consistent with this idea, Sar1-mediated membrane remodeling is dramatically accelerated in the presence of its guanine nucleotide-activating protein (GAP), Sec23-Sec24, and blocked upon addition of guanosine-5'-[(β,γ)-imido]triphosphate, a poorly hydrolysable analog of GTP. Our results also indicate that Sar1 GTPase activity is stimulated by membranes that exhibit elevated curvature, potentially enabling Sar1 membrane scission activity to be spatially restricted to highly bent membranes that are characteristic of a bud neck. Taken together, our data support a stepwise model in which the amino-terminal amphipathic helix of GTP-bound Sar1 stably penetrates the endoplasmic reticulum membrane, promoting local membrane deformation. As membrane bending increases, Sar1 membrane binding is elevated, ultimately culminating in GTP hydrolysis, which may destabilize the bilayer sufficiently to facilitate membrane fission.This work was supported by grants from the NIH (GM110567 and GM088151 to AA). IM, RMH and JME were supported by a grant from the Biotechnology and Biological Sciences Research Council (BB/J018236/1). ERC is an Investigator of the Howard Hughes Medical Institute. We thank Elizabeth Miller for providing purified yeast COPII components, Subhanjan Mondal and Said Goueli at Promega Corporation for providing us access to the GTPase-Glo system ahead of release, and members of the Audhya lab for critically reading this manuscript.This is the final version of the article. It first appeared from the American Society for Biochemistry and Molecular Biology via http://dx.doi.org/10.1074/jbc.M115.67228

    Identification of synaptotagmin effectors via acute inhibition of secretion from cracked PC12 cells

    Get PDF
    T he synaptotagmins (syts) are a family of membrane proteins proposed to regulate membrane traffic in neuronal and nonneuronal cells. In neurons, the Ca2+-sensing ability of syt I is critical for fusion of docked synaptic vesicles with the plasma membrane in response to stimulation. Several putative Ca2+–syt effectors have been identified, but in most cases the functional significance of these interactions remains unknown. Here, we have used recombinant C2 domains derived from the cytoplasmic domains of syts I–XI to interfere with endogenous syt–effector interactions during Ca2+-triggered exocytosis from cracked PC12 cells. Inhibition was closely correlated with syntaxin–SNAP-25 and phosphatidylinositol 4,5-bisphosphate (PIP2)–binding activity. Moreover, we measured the expression levels of endogenous syts in PC12 cells; the major isoforms are I and IX, with trace levels of VII. As expected, if syts I and IX function as Ca2+ sensors, fragments from these isoforms blocked secretion. These data suggest that syts trigger fusion via their Ca2+-regulated interactions with t-SNAREs and PIP2, target molecules known to play critical roles in exocytosis

    First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3

    Full text link
    We carry out a completely first-principles study of the ferroelectric phase transitions in BaTiO3_3. Our approach takes advantage of two features of these transitions: the structural changes are small, and only low-energy distortions are important. Based on these observations, we make systematically improvable approximations which enable the parameterization of the complicated energy surface. The parameters are determined from first-principles total-energy calculations using ultra-soft pseudopotentials and a preconditioned conjugate-gradient scheme. The resulting effective Hamiltonian is then solved by Monte Carlo simulation. The calculated phase sequence, transition temperatures, latent heats, and spontaneous polarizations are all in good agreement with experiment. We find the transitions to be intermediate between order-disorder and displacive character. We find all three phase transitions to be of first order. The roles of different interactions are discussed.Comment: 33 pages latex file, 9 figure

    Molecular dynamics simulation of the order-disorder phase transition in solid NaNO2_2

    Full text link
    We present molecular dynamics simulations of solid NaNO2_2 using pair potentials with the rigid-ion model. The crystal potential surface is calculated by using an \emph{a priori} method which integrates the \emph{ab initio} calculations with the Gordon-Kim electron gas theory. This approach is carefully examined by using different population analysis methods and comparing the intermolecular interactions resulting from this approach with those from the \emph{ab initio} Hartree-Fock calculations. Our numerics shows that the ferroelectric-paraelectric phase transition in solid NaNO2_2 is triggered by rotation of the nitrite ions around the crystallographical c axis, in agreement with recent X-ray experiments [Gohda \textit{et al.}, Phys. Rev. B \textbf{63}, 14101 (2000)]. The crystal-field effects on the nitrite ion are also addressed. Remarkable internal charge-transfer effect is found.Comment: RevTeX 4.0, 11 figure
    • …
    corecore