45,696 research outputs found
Domain-Wall Induced Quark Masses in Topologically-Nontrivial Background
In the domain-wall formulation of chiral fermion, the finite separation
between domain-walls () induces an effective quark mass ()
which complicates the chiral limit. In this work, we study the size of the
effective mass as the function of and the domain-wall height by
calculating the smallest eigenvalue of the hermitian domain-wall Dirac operator
in the topologically-nontrivial background fields. We find that, just like in
the free case, decreases exponentially in with a rate
depending on . However, quantum fluctuations amplify the wall effects
significantly. Our numerical result is consistent with a previous study of the
effective mass from the Gell-Mann-Oakes-Renner relation.Comment: 10 pages, an appendix and minor changes adde
An investigation into grid patching techniques
In the past decade significant advances were made using flow field methods in the calculation of external transonic flows over aerodynamic configurations. It is now possible to calculate inviscid transonic flow over three dimensional configurations by solving the potential equation. However, with the exception of the transonic small disturbance methods which have the advantage of a simple cartesian grid, the configurations over which it is possible to calculate such flows are relatively simple. The major reason for this is the difficulty of producing compatibility between grid generation and flow equation solutions. The main programs in use, use essentially analytic transformations for prescribed configurations and, as such, are not easy to extend. While there is work in progress to extend this type of system to a limited extent, the long term effort is directed towards a more general approach. This approach should not be restricted to producing grid systems in isolation but rather a consideration of the overall problem of flow field solution
Muon and neutrino fluxes
The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources
Domain Wall Fermions with Exact Chiral Symmetry
We show how the standard domain wall action can be simply modified to allow
arbitrarily exact chiral symmetry at finite fifth dimensional extent. We note
that the method can be used for both quenched and dynamical calculations. We
test the method using smooth and thermalized gauge field configurations. We
also make comparisons of the performance (cost) of the domain wall operator for
spectroscopy compared to other methods such as the overlap-Dirac operator and
find both methods are comparable in cost.Comment: revtex, 37 pages, 11 color postscript figure
The muon content of gamma-ray showers
The result of a calculation of the expected number of muons in gamma ray initiated and cosmic ray initiated air showers using a realistic model of hadronic collisions in an effort to understand the available experimental results and to assess the feasibility of using the muon content of showers as a veto to reject cosmic ray initiated showers in ultra-high energy gamma ray astronomy are reported. The possibility of observing very-high energy gamma-ray sources by detecting narrow angle anisotropies in the high energy muon background radiation are considered
Normalised Root Mean Square and Amplitude of Sidebands of Vibration Response as Tools for Gearbox Diagnosis
Quick assessment of the condition of gearboxes used in helicopters is a safety requirement. One of the most widely used helicopter on-board-mounted condition monitoring system these days is the Health and Usage Monitoring System. It has been specifically designed to monitor the condition of all safety-critical components operating in the helicopter through calculation of so-called condition indicators (CIs) - signal processing routines designed to output a single number that represents the condition of the monitored component. Among number of available parameters, there is a couple of CIs that over the years of testing have earned a reputation of being the most reliable measures of the gear tooth condition. At the same time, however, it has been observed that in some cases, those techniques do not properly indicate the deteriorating condition with the propagation of a gear tooth fault with the period of operation. Hence, three more robust methods have been suggested, which are discussed in this article
Scattered Lyman-alpha Radiation Around Sources Before Cosmological Reionization
The spectra of the first galaxies and quasars in the Universe should be
strongly absorbed shortward of their rest-frame Lyman-alpha wavelength by
neutral hydrogen (HI) in the intervening intergalactic medium. However, the
Lyman-alpha line photons emitted by these sources are not eliminated but rather
scatter until they redshift out of resonance and escape due to the Hubble
expansion of the surrounding intergalactic HI. We calculate the resulting
brightness distribution and the spectral shape of the diffuse Lyman-alpha line
emission around high redshift sources, before the intergalactic medium was
reionized. Typically, the Lyman-alpha photons emitted by a source at z=10
scatter over a characteristic angular radius of order 15 arcseconds around the
source and compose a line which is broadened and redshifted by about a thousand
km/s relative to the source. The scattered photons are highly polarized.
Detection of the diffuse Lyman-alpha halos around high redshift sources would
provide a unique tool for probing the neutral intergalactic medium before the
epoch of reionization. On sufficiently large scales where the Hubble flow is
smooth and the gas is neutral, the Lyman-alpha brightness distribution can be
used to determine the cosmological mass densities of baryons and matter.Comment: 21 pages, 5 Postscript figures, accepted by ApJ; figures 1--3
corrected; new section added on the detectability of Lyman alpha halos;
conclusions update
Residual Chiral Symmetry Breaking in Domain-Wall Fermions
We study the effective quark mass induced by the finite separation of the
domain walls in the domain-wall formulation of chiral fermion as the function
of the size of the fifth dimension (), the gauge coupling and the
physical volume . We measure the mass by calculating the small eigenvalues
of the hermitian domain-wall Dirac operator ( in the
topologically-nontrivial quenched SU(3) gauge configurations. We find that the
induced quark mass is nearly independent of the physical volume, decays
exponentially as a function of , and has a strong dependence on the size
of quantum fluctuations controlled by . The effect of the choice of the
lattice gluon action is also studied.Comment: 12 pages, 7 figure
- …
