27,971 research outputs found

    Statistical Mechanics of Vibration-Induced Compaction of Powders

    Full text link
    We propose a theory which describes the density relaxation of loosely packed, cohesionless granular material under mechanical tapping. Using the compactivity concept we develope a formalism of statistical mechanics which allows us to calculate the density of a powder as a function of time and compactivity. A simple fluctuation-dissipation relation which relates compactivity to the amplitude and frequency of a tapping is proposed. Experimental data of E.R.Nowak et al. [{\it Powder Technology} 94, 79 (1997) ] show how density of initially deposited in a fluffy state powder evolves under carefully controlled tapping towards a random close packing (RCP) density. Ramping the vibration amplitude repeatedly up and back down again reveals the existence of reversible and irreversible branches in the response. In the framework of our approach the reversible branch (along which the RCP density is obtained) corresponds to the steady state solution of the Fokker-Planck equation whereas the irreversible one is represented by a superposition of "excited states" eigenfunctions. These two regimes of response are analyzed theoretically and a qualitative explanation of the hysteresis curve is offered.Comment: 11 pages, 2 figures, Latex. Revised tex

    A selfconsistent theory of current-induced switching of magnetization

    Full text link
    A selfconsistent theory of the current-induced switching of magnetization using nonequilibrium Keldysh formalism is developed for a junction of two ferromagnets separated by a nonmagnetic spacer. It is shown that the spin-transfer torques responsible for current-induced switching of magnetization can be calculated from first principles in a steady state when the magnetization of the switching magnet is stationary. The spin-transfer torque is expressed in terms of one-electron surface Green functions for the junction cut into two independent parts by a cleavage plane immediately to the left and right of the switching magnet. The surface Green functions are calculated using a tight-binding Hamiltonian with parameters determined from a fit to an {\it ab initio} band structure.This treatment yields the spin transfer torques taking into account rigorously contributions from all the parts of the junction. To calculate the hysteresis loops of resistance versus current, and hence to determine the critical current for switching, the microscopically calculated spin-transfer torques are used as an input into the phenomenological Landau-Lifshitz equation with Gilbert damping. The present calculations for Co/Cu/Co(111) show that the critical current for switching is ≈107A/cm2\approx 10^7A/cm^2, which is in good agreement with experiment.Comment: 23 pages, 16 figure

    An exactly solvable model for a beta-hairpin with random interactions

    Full text link
    I investigate a disordered version of a simplified model of protein folding, with binary degrees of freedom, applied to an ideal beta-hairpin structure. Disorder is introduced by assuming that the contact energies are independent and identically distributed random variables. The equilibrium free-energy of the model is studied, performing the exact calculation of its quenched value and proving the self-averaging feature.Comment: 9 page

    High-order harmonic generation from inhomogeneous fields

    Full text link
    We present theoretical studies of high-order harmonic generation (HHG) produced by non-homogeneous fields as resulting from the illumination of plasmonic nanostructures with a short laser pulse. We show that both the inhomogeneity of the local fields and the confinement of the electron movement play an important role in the HHG process and lead to the generation of even harmonics and a significantly increased cutoff, more pronounced for the longer wavelengths cases studied. In order to understand and characterize the new HHG features we employ two different approaches: the numerical solution of the time dependent Schr\"odinger equation (TDSE) and the semiclassical approach known as Strong Field Approximation (SFA). Both approaches predict comparable results and show the new features, but using the semiclassical arguments behind the SFA and time-frequency analysis tools, we are able to fully understand the reasons of the cutoff extension.Comment: 25 pages, 12 figure

    Local Spin-Gauge Symmetry of the Bose-Einstein Condensates in Atomic Gases

    Full text link
    The Bose-Einstein condensates of alkali atomic gases are spinor fields with local ``spin-gauge" symmetry. This symmetry is manifested by a superfluid velocity us{\bf u}_{s} (or gauge field) generated by the Berry phase of the spin field. In ``static" traps, us{\bf u}_{s} splits the degeneracy of the harmonic energy levels, breaks the inversion symmetry of the vortex nucleation frequency Ωc1{\bf \Omega}_{c1}, and can lead to {\em vortex ground states}. The inversion symmetry of Ωc1{\bf \Omega}_{c1}, however, is not broken in ``dynamic" traps. Rotations of the atom cloud can be generated by adiabatic effects without physically rotating the entire trap.Comment: Typos in the previous version corrected, thanks to the careful reading of Daniel L. Cox. 13 pages + 2 Figures in uuencode + gzip for

    Quantum transport in noncentrosymmetric superconductors and thermodynamics of ferromagnetic superconductors

    Full text link
    We consider a general Hamiltonian describing coexistence of itinerant ferromagnetism, spin-orbit coupling and mixed spin-singlet/triplet superconducting pairing in the context of mean-field theory. The Hamiltonian is diagonalized and exact eigenvalues are obtained, thus allowing us to write down the coupled gap equations for the different order parameters. Our results may then be applied to any model describing coexistence of any combination of these three phenomena. As a specific application of our results, we consider tunneling between a normal metal and a noncentrosymmetric superconductor with mixed singlet and triplet gaps. The conductance spectrum reveals information about these gaps in addition to how the influence of spin-orbit coupling is manifested. We also consider the coexistence of itinerant ferromagnetism and triplet superconductivity as a model for recently discovered ferromagnetic superconductors. The coupled gap equations are solved self-consistently, and we study the conditions necessary to obtain the coexistent regime of ferromagnetism and superconductivity. Analytical expressions are presented for the order parameters, and we provide an analysis of the free energy to identify the preferred system state. Moreover, we make specific predictions concerning the heat capacity for a ferromagnetic superconductor. In particular, we report a nonuniversal relative jump in the specific heat, depending on the magnetization of the system, at the uppermost superconducting phase transition. [Shortened abstract due to arXiv submission.]Comment: 19 pages, 15 figures (high quality figures available in published version). Accepted for publication in Phys. Rev.

    Interacting Bose and Fermi gases in low dimensions and the Riemann hypothesis

    Full text link
    We apply the S-matrix based finite temperature formalism to non-relativistic Bose and Fermi gases in 1+1 and 2+1 dimensions. In the 2+1 dimensional case, the free energy is given in terms of Roger's dilogarithm in a way analagous to the relativistic 1+1 dimensional case. The 1d fermionic case with a quasi-periodic 2-body potential provides a physical framework for understanding the Riemann hypothesis.Comment: version 3: additional appendix explains how the ν\nu to 1−ν1-\nu duality of Riemann's ζ(ν)\zeta (\nu) follows from a special modular transformation in a massless relativistic theor

    The Subpulse Modulation Properties of Pulsars and its Frequency Dependence

    Full text link
    A large sample of about two hundred pulsars have been observed to study their subpulse modulation at an observing wavelength of (when achievable) both 21 and 92 cm using the Westerbork Synthesis Radio Telescope. For 57 pulsars drifting subpulses are discovered for the first time and are confirmed for many others. This leads to the conclusion that it could well be that the drifting subpulse mechanism is an intrinsic property of the emission mechanism itself, although for some pulsars it is difficult or impossible to detect. It appears that the youngest pulsars have the most disordered subpulses and the subpulses become more and more organized into drifting subpulses as the pulsar ages. Drifting subpulses are in general found at both frequencies and the measured values of P3 at the two frequencies are highly correlated, showing the broadband nature of this phenomenon. Also the modulation indices measured at the two frequencies are clearly correlated, although at 92 cm they are on average possibly higher. The correlations with the modulation indices are argued to be consistent with the picture in which the radio emission is composed out of a drifting subpulse signal plus a quasi-steady signal which becomes, on average, stronger at high observing frequencies. There is no obvious correlation found between P3 and the pulsar age (or any other pulsar parameter) contrary to reports in the past.Comment: Proceedings of the 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More conference in Montrea

    Field theory of self-avoiding walks in random media

    Full text link
    Based on the analogy with the quantum mechanics of a particle propagating in a {\em complex} potential, we develop a field-theoretical description of the statistical properties of a self-avoiding polymer chain in a random environment. We show that the account of the non-Hermiticity of the quantum Hamiltonian results in a qualitatively different structure of the effective action, compared to previous studies. Applying the renormalisation group analysis, we find a transition between the weak-disorder regime, where the quenched randomness is irrelevant, and the strong-disorder regime, where the polymer chain collapses. However, the fact that the renormalised interaction constants and the chiral symmetry breaking regularisation parameter flow towards strong coupling raises questions about the applicability of the perturbative analysis.Comment: RevTeX, 9 pages; accepted for publication in J. Phys.
    • …
    corecore