A large sample of about two hundred pulsars have been observed to study their
subpulse modulation at an observing wavelength of (when achievable) both 21 and
92 cm using the Westerbork Synthesis Radio Telescope. For 57 pulsars drifting
subpulses are discovered for the first time and are confirmed for many others.
This leads to the conclusion that it could well be that the drifting subpulse
mechanism is an intrinsic property of the emission mechanism itself, although
for some pulsars it is difficult or impossible to detect. It appears that the
youngest pulsars have the most disordered subpulses and the subpulses become
more and more organized into drifting subpulses as the pulsar ages. Drifting
subpulses are in general found at both frequencies and the measured values of
P3 at the two frequencies are highly correlated, showing the broadband nature
of this phenomenon. Also the modulation indices measured at the two frequencies
are clearly correlated, although at 92 cm they are on average possibly higher.
The correlations with the modulation indices are argued to be consistent with
the picture in which the radio emission is composed out of a drifting subpulse
signal plus a quasi-steady signal which becomes, on average, stronger at high
observing frequencies. There is no obvious correlation found between P3 and the
pulsar age (or any other pulsar parameter) contrary to reports in the past.Comment: Proceedings of the 40 Years of Pulsars: Millisecond Pulsars,
Magnetars and More conference in Montrea