4 research outputs found

    Measuring crack initiation and the plastic deformation behaviour of titanium aluminides under compressive and tensile uniaxial loading

    Get PDF
    At temperatures of the order of 700 °C, suitable for the operation of low and intermediate pressure turbines and compressors in gas turbine engines, gamma titanium aluminides possess a higher specific strength than nickel superalloys. However, γ-TiAl suffers from a sufficiently reduced plasticity for a threshold approach to fatigue lifing to be necessary. Improving the fatigue behaviour of γ-TiAl requires an understanding of crack nucleation and how this is related to the detailed microstructure. Towards this, the monotonic compressive and tensile deformation behaviour of this two-phase lamellar composite alloy, Ti-45Al-2Nb-2Mn(at.%)-0.8vol%TiB2, currently undergoing engine tests by Rolls Royce, has therefore been measured at both room temperature and at 700°C. Both colony and lamellar-scale deformation features of the material have been investigated. Microstructural conditions with varying lamellar thicknesses were characterised by scanning electron microscopy and transmission Kikuchi diffraction. The near-surface plastic strain field and the build-up of local strains have been measured, using digital image correlation, with a remodelled gold speckle pattern, and compared with misorientation mapping using electron backscatter diffraction, both before and after testing. Temperature was found to have a significant impact on the active deformation mechanisms and their directions relative to the lamellae; this affects the ability of the material to provide compatible deformation. At high temperature, the shear generated upon twinning was found to be closely associated to debonding at colony boundaries. This is related to the possible accumulation of damage in cyclic loading

    Mechanical and optical degradation of flexible optical solar reflectors during simulated low earth orbit thermal cycling

    Get PDF
    Multilayer thin film systems on flexible polymer substrates are used as flexible optical solar reflectors or thermal insulation of satellites and spacecraft. During one year of operation, a satellite in low earth orbit typically encounters 6000 thermal cycles of ±100 °C. Due to the different coefficients of thermal expansion between the individual layers and the substrate it is important to investigate the thermo-mechanical stability of the multilayers as a function of the cyclic heat load. Scanning electron microscopy and focused ion beam cross-sectioning revealed that Inconel-Ag bilayers on fluorinated ethylene propylene (FEP) substrate severely degrade during thermal cycling of ±150 °C in a gaseous N2 atmosphere. After only 100 cycles through thickness cracks and subsurface voids in the Ag layer form as a result of equi-biaxial thermal stresses caused by the large difference in thermal expansion between film and substrate. Transmission Kikuchi Diffraction (TKD) before and after thermal cycling also revealed grain growth and twin widening in the Ag layer. Cracking and void formation are detrimental to application relevant material properties including corrosion protection (Inconel) and reflectivity (Ag). Reflectance measurements revealed that the amount of reflected energy as well as the reflection mode (specular vs. diffuse) significantly change during the first 100 cycles. Saturation of reflection characteristics was observed after 25 cycles, which correlates to a turning point in the evolution of Ag voids. Results of this study indicate that special focus should be directed towards thermal stress control (Δα) and tailoring of the metal-polymer interface to improve resistance of versatile metal-polymer systems against thermal cycling. © 2020 IA

    High-power-density sputtering of industrial-scale targets: Case study of (Al,Cr)N

    No full text
    Large-scale sputter-deposition of hard protective coatings has not been prevalent as the large dimensions of the industrial targets posed an enormous technological challenge: only relatively low power (and plasma) densities could be achieved, resulting ultimately in poor performance of such coatings. Here, we introduce a novel sputtering technology allowing to reach high power densities for industrial tubular targets. This is realised on the principle of a longitudinal movement of a reduced-size magnetron inside the target. In doing so, peak power densities of 840 W/cm2 have been achieved for the overall power of 25 kW and the target dimensions of Ø110 × 510 mm. To demonstrate the effectiveness of the solution, we produced a series of cubic (Al,Cr)N coatings by sputtering an Al60Cr40 target. Most of the coatings have a stoichiometric composition, smooth surface and a moderate amount of growth defects. Significant improvements through recipe optimisation could be achieved resulting in mechanical properties (hardness, fracture toughness, wear resistance) being equal to and even exceeding those of the benchmark coatings produced by means of conventional sputtering and cathodic arc evaporation. Our results open up great potential of this novel sputtering technique for the coating industry

    Ultrastrong nanocrystalline binary alloys discovered via high-throughput screening of the CoCr system

    No full text
    Nanocrystalline (nc) alloys are stronger than their coarse-grained versions. Here, we report ultrastrong alloys, discovered via high-throughput screening of the nc CoCr33-69 materials library. The nc materials library was fabricated using magnetron co-sputtering. The alloys consist of textured, columnar structures with grain size in the nanometric regime. We found that the texture and phase composition can be tailored by changing the Cr concentration. In the investigated region of the nc CoCr system, a relatively broad spectrum of yield strength, determined via micropillar compression tests, was found ranging from 1.41 GPa up to 3.64 GPa. The remarkable strength increment was caused by a chemically- and thermally-driven phase and microstructure evolution of the system. The strongest alloys were found in the regions containing the δCoCr phase, which was considered previously as metastable. Density functional calculations revealed that the δCoCr phase is more energetically favourable in Cr-rich regions compared to single-phase simple solid solutions (HCP, BCC). Experimental results showed that the range of its occurrence is wider than previously thought, i.e. after annealing the δCoCr phase was found above 44 at. % of Cr. We demonstrate that systematic screening of materials libraries can boost the discovery of new materials with outstanding properties
    corecore