11,665 research outputs found

    Line Emission in the Brightest Cluster Galaxies of the NOAO Fundamental Plane and Sloan Digital Sky Surveys

    Full text link
    We examine the optical emission line properties of Brightest Cluster Galaxies (BCGs) selected from two large, homogeneous datasets. The first is the X-ray selected National Optical Astronomy Observatory Fundamental Plane Survey (NFPS), and the second is the C4 catalogue of optically selected clusters built from the Sloan Digital Sky Survey Data Release ~3 (SDSS DR3). Our goal is to better understand the optical line emission in BCGs with respect to properties of the galaxy and the host cluster. Throughout the analysis we compare the line emission of the BCGs to that of a control sample made of the other bright galaxies near the cluster centre. Overall, both the NFPS and SDSS show a modest fraction of BCGs with emission lines (~15%). No trend in the fraction of emitting BCGs as a function of galaxy mass or cluster velocity dispersion is found. However we find that, for those BCGs found in cooling flow clusters, 71^{+9}_{-14}% have optical emission. Furthermore, if we consider only BCGs within 50kpc of the X-ray centre of a cooling flow cluster, the emission-line fraction rises further to 100^{+0}_{-15}%. Excluding the cooling flow clusters, only ~10% of BCGs are line emitting, comparable to the control sample of galaxies. We show that the physical origin of the emission line activity varies: in some cases it has LINER-like line ratios, whereas in others it is a composite of star-formation and LINER-like activity. We conclude that the presence of emission lines in BCGs is directly related to the cooling of X-ray gas at the cluster centre.Comment: Accepted for publication in MNRAS. 13 pages mn2e style with 7 figures and 2 table

    Spitzer observations of Abell 1763. III. The infrared luminosity function in different supercluster environments

    Get PDF
    Context. The study of galaxy luminosity functions (LFs) in different environments provides powerful constraints on the physics of galaxy evolution. The infrared (IR) LF is a particularly useful tool since it is directly related to the distribution of galaxy star-formation rates (SFRs). Aims. We aim to determine the galaxy IR LF as a function of the environment in a supercluster at redshift 0.23 to shed light on the processes driving galaxy evolution in and around clusters. Methods. We base our analysis on multi-wavelength data, which include optical, near-IR, and mid- to far-IR photometry, as well as redshifts from optical spectroscopy. We identify 467 supercluster members in a sample of 24-μm-selected galaxies, on the basis of their spectroscopic (153) and photometric (314) redshifts. IR luminosities and stellar masses are determined for supercluster members via spectral energy distribution fitting. Galaxies with active galactic nuclei are identified by a variety of methods and excluded from the sample. SFRs are obtained for the 432 remaining galaxies from their IR luminosities via the Kennicutt relation. Results. We determine the IR LF of the whole supercluster as well as the IR LFs of three different regions in the supercluster: the cluster core, a large-scale filament, and the cluster outskirts (excluding the filament). A comparison of the IR LFs of the three regions, normalized by the average number densities of r-band selected normal galaxies, shows that the filament (respectively, the core) contains the highest (respectively, the lowest) fraction of IR-emitting galaxies at all levels of IR luminosities, and the highest (respectively, the lowest) total SFR normalized by optical galaxy richness. Luminous IR galaxies (LIRGs) are almost absent in the core region. The relation between galaxy specific SFRs and stellar masses does not depend on the environment, and it indicates that most supercluster LIRGs are rather massive galaxies with relatively low specific SFRs. A comparison with previous IR LF determinations from the literature confirms that the mass-normalized total SFR in clusters increases with redshift, but more rapidly than previously suggested for redshifts ≲ 0.4. Conclusions. The IR LF shows an environmental dependence that is not simply related to the local galaxy density. The filament, an intermediate-density region in the A1763 supercluster, contains the highest fraction of IR-emitting galaxies. We interpret our findings within a possible scenario for the evolution of galaxies in and around clusters

    Dispersion of Ripplons in Superfluid 4he

    Full text link
    A detailed study of the dispersion law of surface excitations in liquid \hef at zero temperature is presented, with special emphasis to the short wave length region. The hybridization mechanism between surface and bulk modes is discussed on a general basis, investigating the scattering of slow rotons from the surface. An accurate density functional, accounting for backflow effects, is then used to determine the dispersion of both bulk and surface excitations. The numerical results are close to the experimental data obtained on thick films and explicitly reveal the occurrence of important hybridization effects between ripplons and rotons.Comment: 23 pages, REVTEX 3.0, 11 figures upon request, UTF-326/9

    Group Analysis of Variable Coefficient Diffusion-Convection Equations. I. Enhanced Group Classification

    Full text link
    We discuss the classical statement of group classification problem and some its extensions in the general case. After that, we carry out the complete extended group classification for a class of (1+1)-dimensional nonlinear diffusion--convection equations with coefficients depending on the space variable. At first, we construct the usual equivalence group and the extended one including transformations which are nonlocal with respect to arbitrary elements. The extended equivalence group has interesting structure since it contains a non-trivial subgroup of non-local gauge equivalence transformations. The complete group classification of the class under consideration is carried out with respect to the extended equivalence group and with respect to the set of all point transformations. Usage of extended equivalence and correct choice of gauges of arbitrary elements play the major role for simple and clear formulation of the final results. The set of admissible transformations of this class is preliminary investigated.Comment: 25 page

    Non Equilibrium Electronic Distribution in Single Electron Devices

    Full text link
    The electronic distribution in devices with sufficiently small diemnsions may not be in thermal equilibrium with their surroundings. Systems where the occupancies of electronic states are solely determined by tunneling processes are analyzed. It is shown that the effective temperature of the device may be higher, or lower, than that of its environment, depending on the applied voltage and the energy dependence of the tunneling rates. The I-V characteristics become asymmetric. Comparison with recent experiments is made

    Collective excitations of Bose-Einstein condensed gases at finite temperatures

    Full text link
    We have applied the Popov version of the Hartree-Fock-Bogoliubov (HFB) approximation to calculate the finite-temperature excitation spectrum of a Bose-Einstein condensate (BEC) of 87^{87}Rb atoms. For lower values of the temperature, we find excellent agreement with recently-published experimental data for the JILA TOP trap. In contrast to recent comparison of the results of HFB--Popov theory with experimental condensate fractions and specific heats, there is disagreement of the theoretical and recent experimental results near the BEC phase transition temperature.Comment: 4 pages, Latex, with 4 figures. More info at http://amo.phy.gasou.edu/bec.htm

    Evolution and global collapse of trapped Bose condensates under variations of the scattering length

    Full text link
    We develop the idea of selectively manipulating the condensate in a trapped Bose-condensed gas, without perturbing the thermal cloud. The idea is based on the possibility to modify the mean field interaction between atoms (scattering length) by nearly resonant incident light or by spatially uniform change of the trapping magnetic field. For the gas in the Thomas-Fermi regime we find analytical scaling solutions for the condensate wavefunction evolving under arbitrary variations of the scattering length aa. The change of aa from positive to negative induces a global collapse of the condensate, and the final stages of the collapse will be governed by intrinsic decay processes.Comment: 4 pages, LaTeX, other comments are at http://WWW.amolf.nl/departments/quantumgassen/TITLE.HTM

    Toward semiclassical theory of quantum level correlations of generic chaotic systems

    Full text link
    In the present work we study the two-point correlation function R(ϵ)R(\epsilon) of the quantum mechanical spectrum of a classically chaotic system. Recently this quantity has been computed for chaotic and for disordered systems using periodic orbit theory and field theory. In this work we present an independent derivation, which is based on periodic orbit theory. The main ingredient in our approach is the use of the spectral zeta function and its autocorrelation function C(ϵ)C(\epsilon). The relation between R(ϵ)R(\epsilon) and C(ϵ)C(\epsilon) is constructed by making use of a probabilistic reasoning similar to that which has been used for the derivation of Hardy -- Littlewood conjecture. We then convert the symmetry properties of the function C(ϵ)C(\epsilon) into relations between the so-called diagonal and the off-diagonal parts of R(ϵ)R(\epsilon). Our results are valid for generic systems with broken time reversal symmetry, and with non-commensurable periods of the periodic orbits.Comment: 15 pages(twocolumn format), LaTeX, EPSF, (figures included
    corecore