2,244 research outputs found

    Gsi demo: Multiuser gesture/speech interaction over digital tables by wrapping single user applications

    Get PDF
    Most commercial software applications are designed for a single user using a keyboard/mouse over an upright monitor. Our interest is exploiting these systems so they work over a digital table. Mirroring what people do when working over traditional tables, we want to allow multiple people to interact naturally with the tabletop application and with each other via rich speech and hand gesture and speech interaction on a digital table for geospatial applications- Google Earth, Warcraft III and The Sims. In this paper, we describe our underlying architecture: GSI Demo. First, GSI Demo creates a run-time wrapper around existing single user applications: it accepts and translates speech and gestures from multiple people into a single stream of keyboard and mouse inputs recognized by the application. Second, it lets people use multimodal demonstration- instead of programming- to quickly map their own speech and gestures to these keyboard/mouse inputs. For example, continuous gestures are trained by saying ¨Computer, when I do (one finger gesture), you do (mouse drag) ¨. Similarly, discrete speech commands can be trained by saying ¨Computer, when I say (layer bars), you do (keyboard and mouse macro) ¨. The end result is that end users can rapidly transform single user commercial applications into a multi-user, multimodal digital tabletop system

    System Modeling of Gas Engine Driven Heat Pump

    Get PDF
    To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions

    Mitochondrial nutrients improve immune dysfunction in the type 2 diabetic Goto-Kakizaki rats.

    Get PDF
    The development of type 2 diabetes is accompanied by decreased immune function and the mechanisms are unclear. We hypothesize that oxidative damage and mitochondrial dysfunction may play an important role in the immune dysfunction in diabetes. In the present study, we investigated this hypothesis in diabetic Goto-Kakizaki rats by treatment with a combination of four mitochondrial-targeting nutrients, namely, R-alpha-lipoic acid, acetyl-L-carnitine, nicotinamide and biotin. We first studied the effects of the combination of these four nutrients on immune function by examining cell proliferation in immune organs (spleen and thymus) and immunomodulating factors in the plasma. We then examined, in the plasma and thymus, oxidative damage biomarkers, including lipid peroxidation, protein oxidation, reactive oxygen species, calcium and antioxidant defence systems, mitochondrial potential and apoptosis-inducing factors (caspase 3, p53 and p21). We found that immune dysfunction in these animals is associated with increased oxidative damage and mitochondrial dysfunction and that the nutrient treatment effectively elevated immune function, decreased oxidative damage, enhanced mitochondrial function and inhibited the elevation of apoptosis factors. These effects are comparable to, or greater than, those of the anti-diabetic drug pioglitazone. These data suggest that a rational combination of mitochondrial-targeting nutrients may be effective in improving immune function in type 2 diabetes through enhancement of mitochondrial function, decreased oxidative damage, and delayed cell death in the immune organs and blood

    Development of Durable Shrink-resist Coating of Wool with Sol-gel Polymer Processing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Knitted wool fabric was pre-treated with the serine type protease, Esperase 8.0L (EC3.4.21.62), and sodium sulphite followed by an immersion treatment with a sol-gel hybrid polymer. To enhance the durability of the sol-gel treatment on wool, one of two different alkoxysilane containing coupling epoxy or mercapto groups were added to the sol-gel hybrid. The combination of protease treatment with an immersion sol-gel treatment achieved wool fabric that was lightweight with a soft handle and had combined shrink-resistance and hydrophobic properties without fibre discoloration. The addition of an alkoxysilane with a mercapto coupling group within the sol-gel hybrid gave better performance than using an alkoxysilane with an epoxy coupling group in terms of polymer uptake, fabric shrink resistance, whiteness and durability to washing

    Selective enzymatic modification of wool/polyester blended fabrics for surface patterning

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.An enzyme-based process was investigated to achieve surface patterning of fabrics as an alternative to conventional chemical processes. In the current study, the enzyme protease was employed to selectively modify a wool/polyester blended fabric to impart decorative surface effects. Controlled protease processing of the blended fabric dyed with Lanasol Blue CE enabled the degradation and removal of the dyed wool fibre component from the fabric blend, resulting in novel fading and differential fabric relief due to degradation of wool, revealing the undyed polyester component after enzyme treatment. A 38.5% weight loss was achieved, therefore 85.6% of the wool in the 45/55% wool/polyester blended fabric was removed from the structure. The activity of protease is highly specific, therefore, it caused no damage to the polyester component. The control studies led to the development of surface pattern designs using the enzyme process, achieving effects similar to current processes such as devor e and discharge printing. This novel enzyme process permits the replacement of harsh chemicals used in current surface patterning processes with small doses of biodegradable enzymes

    Emergence of collective changes in travel direction of starling flocks from individual birds fluctuations

    Full text link
    One of the most impressive features of moving animal groups is their ability to perform sudden coherent changes in travel direction. While this collective decision can be a response to an external perturbation, such as the presence of a predator, recent studies show that such directional switching can also emerge from the intrinsic fluctuations in the individual behaviour. However, the cause and the mechanism by which such collective changes of direction occur are not fully understood yet. Here, we present an experimental study of spontaneous collective turns in natural flocks of starlings. We employ a recently developed tracking algorithm to reconstruct three-dimensional trajectories of each individual bird in the flock for the whole duration of a turning event. Our approach enables us to analyze changes in the individual behavior of every group member and reveal the emergent dynamics of turning. We show that spontaneous turns start from individuals located at the elongated edges of the flocks, and then propagate through the group. We find that birds on the edges deviate from the mean direction of motion much more frequently than other individuals, indicating that persistent localized fluctuations are the crucial ingredient for triggering a collective directional change. Finally, we quantitatively show that birds follow equal radius paths during turning allowing the flock to change orientation and redistribute risky locations among group members. The whole process of turning is a remarkable example of how a self-organized system can sustain collective changes and reorganize, while retaining coherence.Comment: 18 pages, 2 Videos adde

    Collision Avoidance in Tightly-Constrained Environments without Coordination: a Hierarchical Control Approach

    Full text link
    We present a hierarchical control approach for maneuvering an autonomous vehicle (AV) in tightly-constrained environments where other moving AVs and/or human driven vehicles are present. A two-level hierarchy is proposed: a high-level data-driven strategy predictor and a lower-level model-based feedback controller. The strategy predictor maps an encoding of a dynamic environment to a set of high-level strategies via a neural network. Depending on the selected strategy, a set of time-varying hyperplanes in the AV's position space is generated online and the corresponding halfspace constraints are included in a lower-level model-based receding horizon controller. These strategy-dependent constraints drive the vehicle towards areas where it is likely to remain feasible. Moreover, the predicted strategy also informs switching between a discrete set of policies, which allows for more conservative behavior when prediction confidence is low. We demonstrate the effectiveness of the proposed data-driven hierarchical control framework in a two-car collision avoidance scenario through simulations and experiments on a 1/10 scale autonomous car platform where the strategy-guided approach outperforms a model predictive control baseline in both cases.Comment: 7 pages, 7 figures, accepted at ICRA 202

    Does the Federal Reserve Lexicographically Order Its Policy Objectives?

    Get PDF
    We test a Federal Reserve reaction function for threshold effects among the Fed's policy objectives. We find evidence that the Fed responds with greater intensity to a policy objective when that policy objective moves beyond acceptable bounds. We also find that the Fed only responds to lesser objectives when its primary, or threshold, objective is within acceptable bounds--a behavior which can be described as lexicographic ordering. Finally, our results suggest that Fed policy is becoming increasingly responsive to inflation and less responsive to unemployment.Fed; Policy
    • …
    corecore