3 research outputs found

    Aerosol and Cloud Detection Using Machine Learning Algorithms and Space-Based Lidar Data

    No full text
    Clouds and aerosols play a significant role in determining the overall atmospheric radiation budget, yet remain a key uncertainty in understanding and predicting the future climate system. In addition to their impact on the Earth’s climate system, aerosols from volcanic eruptions, wildfires, man-made pollution events and dust storms are hazardous to aviation safety and human health. Space-based lidar systems provide critical information about the vertical distributions of clouds and aerosols that greatly improve our understanding of the climate system. However, daytime data from backscatter lidars, such as the Cloud-Aerosol Transport System (CATS) on the International Space Station (ISS), must be averaged during science processing at the expense of spatial resolution to obtain sufficient signal-to-noise ratio (SNR) for accurately detecting atmospheric features. For example, 50% of all atmospheric features reported in daytime operational CATS data products require averaging to 60 km for detection. Furthermore, the single-wavelength nature of the CATS primary operation mode makes accurately typing these features challenging in complex scenes. This paper presents machine learning (ML) techniques that, when applied to CATS data, (1) increased the 1064 nm SNR by 75%, (2) increased the number of layers detected (any resolution) by 30%, and (3) enabled detection of 40% more atmospheric features during daytime operations at a horizontal resolution of 5 km compared to the 60 km horizontal resolution often required for daytime CATS operational data products. A Convolutional Neural Network (CNN) trained using CATS standard data products also demonstrated the potential for improved cloud-aerosol discrimination compared to the operational CATS algorithms for cloud edges and complex near-surface scenes during daytime

    A SmallSat Concept to Resolve Diurnal and Vertical Variations of Aerosols, Clouds, and Boundary Layer Height

    No full text
    International audienceA SmallSat mission concept is formulated here to carry out Time-varying Optical Measurements of Clouds and Aerosol Transport (TOMCAT) from space while embracing low-cost opportunities enabled by the revolution in Earth science observation technologies. TOMCAT's "around-the-clock" measurements will provide needed insights and strong synergy with existing Earth observation satellites to 1) statistically resolve diurnal and vertical variation of cirrus cloud properties (key to Earth's radiation budget), 2) determine the impacts of regional and seasonal planetary boundary layer (PBL) diurnal variation on surface air quality and low-level cloud distributions, and 3) characterize smoke and dust emission processes impacting their long-range transport on the subseasonal to seasonal time scales. Clouds, aerosol particles, and the PBL play critical roles in Earth's climate system at multiple spatiotemporal scales. Yet their vertical variations as a function of local time are poorly measured from space. Active sensors for profiling the atmosphere typically utilize sun-synchronous low-Earth orbits (LEO) with rather limited temporal and spatial coverage, inhibiting the characterization of spatiotemporal variability. Pairing compact active lidar and passive multiangle remote sensing technologies from an inclined LEO platform enables measurements of the diurnal and vertical variability of aerosols, clouds, and aerosol-mixing-layer (or PBL) height in tropical-to-midlatitude regions where most of the world's population resides. TOMCAT is conceived to bring potential societal benefits by delivering its data products in near-real time and offering on-demand hazard-monitoring capabilities to profile fire injection of smoke particles, the frontal lofting of dust particles, and the eruptive rise of volcanic plumes
    corecore