1,468 research outputs found

    Classical Strongly Coupled QGP I: The Model and Molecular Dynamics Simulations

    Full text link
    We propose a model for the description of strongly interacting quarks and gluon quasiparticles at T=(13)TcT=(1-3)T_c, as a classical and nonrelativistic colored Coulomb gas. The sign and strength of the inter-particle interactions are fixed by the scalar product of their classical {\it color vectors} subject to Wong's equations. The model displays a number of phases as the Coulomb coupling is increased ranging from a gas, to a liquid, to a crystal with antiferromagnetic-like color ordering. We analyze the model using Molecular Dynamics (MD) simulations and discuss the density-density correlator in real time. We extract pertinent decorrelation times, diffusion and viscosity constants for all phases. The classical results when extrapolated to the sQGP suggest that the phase is liquid-like, with a diffusion constant D0.1/TD\approx 0.1/T and a bulk viscosity to entropy density ratio η/s1/3\eta/s\approx 1/3.Comment: 11 pages, 14 figure

    Long-Range Exciton Diffusion in Two-Dimensional Assemblies of Cesium Lead Bromide Perovskite Nanocrystals

    Get PDF
    F\"orster Resonant Energy Transfer (FRET)-mediated exciton diffusion through artificial nanoscale building block assemblies could be used as a new optoelectronic design element to transport energy. However, so far nanocrystal (NC) systems supported only diffusion length of 30 nm, which are too small to be useful in devices. Here, we demonstrate a FRET-mediated exciton diffusion length of 200 nm with 0.5 cm2/s diffusivity through an ordered, two-dimensional assembly of cesium lead bromide perovskite nanocrystals (PNC). Exciton diffusion was directly measured via steady-state and time-resolved photoluminescence (PL) microscopy, with physical modeling providing deeper insight into the transport process. This exceptionally efficient exciton transport is facilitated by PNCs high PL quantum yield, large absorption cross-section, and high polarizability, together with minimal energetic and geometric disorder of the assembly. This FRET-mediated exciton diffusion length matches perovskites optical absorption depth, opening the possibility to design new optoelectronic device architectures with improved performances, and providing insight into the high conversion efficiencies of PNC-based optoelectronic devices

    Computational fluid dynamics modeling of symptomatic intracranial atherosclerosis may predict risk of stroke recurrence.

    Get PDF
    BackgroundPatients with symptomatic intracranial atherosclerosis (ICAS) of ≥ 70% luminal stenosis are at high risk of stroke recurrence. We aimed to evaluate the relationships between hemodynamics of ICAS revealed by computational fluid dynamics (CFD) models and risk of stroke recurrence in this patient subset.MethodsPatients with a symptomatic ICAS lesion of 70-99% luminal stenosis were screened and enrolled in this study. CFD models were reconstructed based on baseline computed tomographic angiography (CTA) source images, to reveal hemodynamics of the qualifying symptomatic ICAS lesions. Change of pressures across a lesion was represented by the ratio of post- and pre-stenotic pressures. Change of shear strain rates (SSR) across a lesion was represented by the ratio of SSRs at the stenotic throat and proximal normal vessel segment, similar for the change of flow velocities. Patients were followed up for 1 year.ResultsOverall, 32 patients (median age 65; 59.4% males) were recruited. The median pressure, SSR and velocity ratios for the ICAS lesions were 0.40 (-2.46-0.79), 4.5 (2.2-20.6), and 7.4 (5.2-12.5), respectively. SSR ratio (hazard ratio [HR] 1.027; 95% confidence interval [CI], 1.004-1.051; P = 0.023) and velocity ratio (HR 1.029; 95% CI, 1.002-1.056; P = 0.035) were significantly related to recurrent territorial ischemic stroke within 1 year by univariate Cox regression, respectively with the c-statistics of 0.776 (95% CI, 0.594-0.903; P = 0.014) and 0.776 (95% CI, 0.594-0.903; P = 0.002) in receiver operating characteristic analysis.ConclusionsHemodynamics of ICAS on CFD models reconstructed from routinely obtained CTA images may predict subsequent stroke recurrence in patients with a symptomatic ICAS lesion of 70-99% luminal stenosis

    Quantum interest in two dimensions

    Get PDF
    The quantum interest conjecture of Ford and Roman asserts that any negative-energy pulse must necessarily be followed by an over-compensating positive-energy one within a certain maximum time delay. Furthermore, the minimum amount of over-compensation increases with the separation between the pulses. In this paper, we first study the case of a negative-energy square pulse followed by a positive-energy one for a minimally coupled, massless scalar field in two-dimensional Minkowski space. We obtain explicit expressions for the maximum time delay and the amount of over-compensation needed, using a previously developed eigenvalue approach. These results are then used to give a proof of the quantum interest conjecture for massless scalar fields in two dimensions, valid for general energy distributions.Comment: 17 pages, 4 figures; final version to appear in PR

    Analysis of ocean power extraction capabilites of a rotary wave energy conversion system

    Get PDF
    Gemstone Team WAVES (Water and Versatile Energy Systems)In recent years, there has been a shift towards renewable energy sources to help alleviate the dependence on fossil fuels. Many industries have started to investigate wind, solar, and other alternative energy sources. Our research aimed to provide additional insight into the field of wave energy as a component of a comprehensive energy solution. We selected a unique wave energy converter design and analyzed potential modifications that could improve its performance. After developing design modifications, we constructed and tested a prototype of a Rotary Wave Energy Collector (R-WEC). We tested the rotor under two mooring configurations and collected data on the relationship between power output and wavelength. We also analyzed the rotor's performance under single and multiple frequency wave environments. In addition, we investigated the implementation of a full-scale device through a study of three coastal regions in the mid-Atlantic U.S. area. This research showed that our R-WEC design could be implemented in shallow water, single frequency wave environments to generate usable power
    corecore