93 research outputs found

    Anion Effects on Gas Solubility in Ionic Liquids

    Get PDF
    This work presents the results of solubility measurements for a series of gases in 1-n-butyl-3-methyl imidazolium tetrafluoroborate and 1-n-butyl-3-methyl imidazolium bis(trifluoromethylsulfonyl) imide. The gases considered include benzene, carbon dioxide, nitrous oxide, ethylene, ethane, oxygen, and carbon monoxide. Carbon dioxide and oxygen solubilities are also reported in methyl-tributylammonium bis(trifluoromethylsulfonyl) imide, butyl-methyl pyrrolidinium bis(trifluoromethylsulfonyl) imide, and tri-isobutyl-methyl phosphonium p-toluenesulfonate. We report the associated Henry's constants and enthalpies and entropies of absorption. In general, benzene, followed by carbon dioxide and nitrous oxide, have the highest solubilities and strongest interactions with the ionic liquids, followed by ethylene and ethane. Oxygen had very low solubilities and weak interactions. Carbon monoxide had a solubility below the detection limit of our apparatus. Ionic liquids with the bis(trifluoromethylsulfonyl) imide anion had the largest affinity for CO_2, regardless of whether the cation was imidazolium, pyrrolidinium, or tetraalkylammonium. These results suggest that the nature of the anion has the most significant influence on the gas solubilities

    Simulation and measurement of water-induced liquid-liquid phase separation of imidazolium ionic liquid mixtures

    Get PDF
    The miscibility of ionic liquid (IL) pairs with a common cation (1-ethyl-3-methylimidazolium [C2C1im]) and different anions (bis(trifluoromethylsulfonyl)amide [TFSI], acetate [OAc], and chloride [Cl]) was investigated at a wide range of water concentrations at room temperature. Molecular simulations predicted that the addition of water to the [C2C1im][TFSI]:[C2C1im][OAc] and [C2C1im][TFSI]:[C2C1im][Cl] mixtures would induce a liquid-liquid phase separation and that water addition to the [C2C1im][OAc]:[C2C1im][Cl] mixture would not produce a phase separation. The effect of water on the phase behavior of the IL mixtures was verified experimentally, and the IL and water concentrations were determined in each phase. Of particular importance is the analytical methodology used to determine the species’ concentration, where 1H NMR and a combination of 19F NMR, Karl Fischer titration, and ion chromatography techniques were applied.Joint Center for Energy Storage Research under Contract No. DE-AC0206CH11357Air Force Office of Scientific Research under Contract No. AFOSR FA9550-18-1- 0321

    Influence of N,N,N-trimethyl-1-adamantyl ammonium (TMAda+) Structure Directing Agent on Al Pair Distributions and Features in Chabazite Zeolite

    Full text link
    While organic structure directing agents (OSDAs) are well known to have a directional influence on the topology of a crystallizing zeolite, the relationship between OSDA charge and siting of aliovalent ions on a primarily siliceous framework is unclear. Here, we explore the relationship between OSDA orientation, Al3+ siting, and lattice energy, taking as a model system CHA zeolite occluded with N,N,N-trimethyl-1-adamantyl ammonium (TMAda+) at an Si/Al ratio of 11/1. We use density functional theory calculations to parametrize a fixed-charge classical model describing van der Waals and electrostatic interactions between framework and OSDA. We enumerate and explore all possible combinations of OSDA orientation and Al location (attending to Lowenstein's rule) within a 36 T-site supercell. We find that interaction energies vary over 60 kJ/double-six-ring-unit (d6r). Further, analysis of configurations reveals that energies are sensitive to Al-Al proximity, such that low energies are associated with Al3+ pairs in 8-membered rings and higher energies associated with Al3+ pairs in smaller 6- and 4-membered rings. Comparisons with Al siting inferred from CHA zeolite crystallized with TMAda+ suggests that these computed interaction energies are useful reporters of observed Al siting in CHA synthesized with TMAda+

    Evolution of microscopic heterogeneity and dynamics in choline chloride-based deep eutectic solvents

    Full text link
    Deep eutectic solvents (DESs) are an emerging class of non-aqueous solvents that are potentially scalable, easy to prepare and functionalize for many applications ranging from biomass processing to energy storage technologies. Predictive understanding of the fundamental correlations between local structure and macroscopic properties is needed to exploit the large design space and tunability of DESs for specific applications. Here, we employ a range of computational and experimental techniques that span length-scales from molecular to macroscopic and timescales from picoseconds to seconds to study the evolution of structure and dynamics in model DESs, namely Glyceline and Ethaline, starting from the parent compounds. We show that systematic addition of choline chloride leads to microscopic heterogeneities that alter the primary structural relaxation in glycerol and ethyleneglycol and result in new dynamic modes that are strongly correlated to the macroscopic properties of the DES formed
    • …
    corecore