2,501 research outputs found

    Disproportionate Impact Of K-12 School Suspension And Expulsion On Black Students In Southern States

    Get PDF
    This report aims to make transparent the rates at which school discipline practices and policies impact Black students in every K-12 public school district in 13 Southern states: Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, Virginia, and West Virginia

    Implementation of Visualization and Modeling Technologies for Transportation Construction

    Get PDF
    State departments of transportation (DOTs) increasingly use visualization and modeling technologies for delivering transportation projects across the United States. Advanced and innovative technologies have the ability to improve various construction processes and tasks while making the construction process more efficient and productive. Visualization and modeling technologies, which include building information modeling for infrastructure, light detection and ranging, virtual reality, and augmented reality, are becoming more commonplace in transportation construction. Yet, the use of these technologies varies among state DOTs. The intent of this study is to investigate the use of visualization and modeling technologies for transportation construction. This study employed a triangulation research methodology including an extensive literature review, survey questionnaire of DOTs, and seven case studies. Results of the study show that 92% of state DOTs use visualization and modeling technologies for construction. Then, 81% of DOTs use visualization and modeling technologies for constructability reviews, 38% use them for documentation of as-builts and simulating bridge and structure construction, and 35% use them for quality management, inspections, and monitoring progress of work. The main barriers to using visualization and modeling technologies include legal concerns with using digital models as contract documents, incompatibilities in software and hardware between the DOTs and contracted parties, and the appropriate knowledge, skills, and abilities required to use visualization and modeling technologies for construction. The findings from this study provides valuable information for state DOTs to approach their implementation and use of visualization and modeling technologies for transportation construction delivery. &nbsp

    Temporal Evolution of the Size and Temperature of Betelgeuse's Extended Atmosphere

    Full text link
    We use the Very Large Array (VLA) in the A configuration with the Pie Town (PT) Very Long Baseline Array (VLBA) antenna to spatially resolve the extended atmosphere of Betelgeuse over multiple epochs at 0.7, 1.3, 2.0, 3.5, and 6.1 cm. The extended atmosphere deviates from circular symmetry at all wavelengths while at some epochs we find possible evidence for small pockets of gas significantly cooler than the mean global temperature. We find no evidence for the recently reported e-MERLIN radio hotspots in any of our multi-epoch VLA/PT data, despite having sufficient spatial resolution and sensitivity at short wavelengths, and conclude that these radio hotspots are most likely interferometric artefacts. The mean gas temperature of the extended atmosphere has a typical value of 3000 K at 2 RR_{\star} and decreases to 1800 K at 6 RR_{\star}, in broad agreement with the findings of the single epoch study from Lim et al. (1998). The overall temperature profile of the extended atmosphere between 2Rr6R2 R_{\star} \lesssim r \lesssim 6 R_{\star} can be described by a power law of the form Tgas(r)r0.6T_{\mathrm{gas}}(r) \propto r^{-0.6}, with temporal variability of a few 100 K evident at some epochs. Finally, we present over 12 years of V band photometry, part of which overlaps our multi-epoch radio data. We find a correlation between the fractional flux density variability at V band with most radio wavelengths. This correlation is likely due to shock waves induced by stellar pulsations, which heat the inner atmosphere and ionize the more extended atmosphere through radiative means. Stellar pulsations may play an important role in exciting Betelgeuse's extended atmosphere

    DEVELOPING FLEXIBLE ECONOMIC THRESHOLDS FOR PEST MANAGEMENT USING DYNAMIC PROGRAMMING

    Get PDF
    The rice stink bug is a major pest of rice in Texas, causing quality related damage. The previous threshold used for assisting in rice stink bug spray decisions lacked flexibility in economic and production decision variables and neglected the dynamics of the pest population. Using stochastic dynamic programming, flexible economic thresholds for the rice stink bug were generated. The new thresholds offer several advantages over the old, static thresholds, including increased net returns, incorporation of pest dynamics, user flexibility, ease of implementation, and a systematic process for updating.Economic thresholds, Dynamic programming, Pest management, Rice, Crop Production/Industries,

    Pot roasting of lead ores

    Get PDF
    In this thesis for a starting point, we attempted a roast of straight galena with no diluent. As anticipated the results were nil. We next attempted the roast with a mixture of galena and silica, and obtained fair results. Our next experiment was to use limestone with the galena. Because of the large percentage of limestone present the results were not satisfactory. Next pyrites and limestone were used with the galena, and excellent results were obtained. We made another run, using pyrites and limestone, but increasing the per-centage of galena by 25%. This run was also very successful. From these few runs, the data we are able to glean from periodicals, and the rational chemical analysis that we made on the roasted product, we base our thesis --Introduction, pages 1 -2

    The Photospheric Temperatures of Betelgeuse during the Great Dimming of 2019/2020: No New Dust Required

    Full text link
    The processes that shape the extended atmospheres of red supergiants (RSGs), heat their chromospheres, create molecular reservoirs, drive mass loss, and create dust remain poorly understood. Betelgeuse's V-band "Great Dimming" event of 2019 September /2020 February and its subsequent rapid brightening provides a rare opportunity to study these phenomena. Two different explanations have emerged to explain the dimming; new dust appeared in our line of sight attenuating the photospheric light, or a large portion of the photosphere had cooled. Here we present five years of Wing three-filter (A, B, and C band) TiO and near-IR photometry obtained at the Wasatonic Observatory. These reveal that parts of the photosphere had a mean effective temperature (Teff(T_{\rm eff}) significantly lower than that found by (Levesque & Massey 2020). Synthetic photometry from MARCS -model photospheres and spectra reveal that the V band, TiO index, and C-band photometry, and previously reported 4000-6800 Angstrom spectra can be quantitatively reproduced if there are multiple photospheric components, as hinted at by VLT-SPHERE images (Montarges et al. 2020). If the cooler component has ΔTeff250\Delta T_{\rm eff} \ge 250 K cooler than 3650 K, then no new dust is required to explain the available empirical constraints. A coincidence of the dominant short- (430\sim 430 day) and long-period (5.8\sim 5.8 yr) V-band variations occurred near the time of deep minimum (Guinan et al. 2019). This is in tandem with the strong correlation of V mag and photospheric radial velocities, recently reported by Dupree et al. (2020b). These suggest that the cooling of a large fraction of the visible star has a dynamic origin related to the photospheric motions, perhaps arising from pulsation or large-scale convective motions.Comment: Accepted ApJ - 19 pages, 5 figure

    Analysis of nonlinear electroelastic continua with electric conduction

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1999.Includes bibliographical references (p. 135-137).This thesis presents the nonlinear theory for large deformation electroelastic continua with electric conduction. This theory is suitable for modeling actuator and sensor devices composed of deformable, electromechanically coupled, highly insulating materials. Consistency is proven between the large deformation theory and the classical Poynting vector based piezoelectric small deformation theory, extended for electric conduction. A result is that electric body forces, realized mathematically as electric surface tractions, are retained in the small deformation approximation. A finite element formulation is presented suitable for performance analysis of deformable electromechanical actuator and sensor devices composed of highly insulating materials with nonlinear response functions, under the small deformation approximation. Results demonstrate the significant cumulative effects of a weak electric current flow for electric voltage DC offset loading of a highly electrically insulating composite device.by John E. Harper.S.M

    Far-UV Emissions of the Sun in Time: Probing Solar Magnetic Activity and Effects on Evolution of Paleo-Planetary Atmospheres

    Full text link
    We present and analyze FUSE observations of six solar analogs. These are single, main-sequence G0-5 strs selected as proxies for the Sun at several stages of its main-sequence lifetime. The emission features in the FUSE 920-1180 A wavelength range allow for a critical probe of the hot plasma over three decades in temperature. Using the flux ratio CIII 1176/977 as diagnostics, we investigate the dependence of the electron pressure of the transition region as a function of the rotation period, age and magnetic activity. The results from these solar proxies indicate that the electron pressure of the stellar ~10^5-K plasma decreases by a factor of about 70 between the young, fast-rotating magnetically active star and the old, slow-rotating inactive star. Also, the observations indicate that the average surface fluxes of emission features strongly decrease with increasing stellar age and longer rotation period. The emission flux evolution with age or rotation period is well fitted by power laws, which become steeper from cooler chromospheric (10^4 K) to hotter coronal (10^7 K) plasma. The relationship for the integrated (920-1180 A) FUSE flux indicates that the solar far-ultraviolet emissions were about twice the present value 2.5 Gyr ago and about 4 times the present value 3.5 Gyr ago. Note also that the FUSE/FUV flux of the Zero-Age Main Sequence Sun could have been higher by as much as 50 times. Our analysis suggests that the strong FUV emissions of the young Sun may have played a crucial role in the developing planetary system, in particular through the photoionization, photochemical evolution and possible erosion of the planetary atmospheres. (abridged)Comment: 15 pages, 8 figures, accepted for publication in Ap
    corecore