311 research outputs found

    Quantitative powder diffraction using a (2+3) surface diffractometer and an area detector

    Full text link
    X-ray diffractometers primarily designed for surface x-ray diffraction are often used to measure the diffraction from powders, textured materials, and fiber-texture samples in so-called 2θ2\theta scans. Unlike high-energy powder diffraction only a fraction of the powder rings is typically measured and the data consists of many detector images across the 2θ2\theta range. Such diffractometers typically scan in directions not possible on a conventional lab-diffractometer, which gives enhanced control of the scattering vector relative to the sample orientation. There are, however, very few examples where the measured intensity is directly used, such as for profile/Rietveld refinement, as is common with other powder diffraction data. Although the underlying physics is known, converting the data is time-consuming and the appropriate corrections are dispersed across several publications, often not with powder diffraction in mind. In this paper we present the angle calculations and correction factors required to calculate meaningful intensities for 2θ2\theta scans with a (2+3)-type diffractometer and an area detector. We also discuss some of the limitations with respect to texture, refraction, and instrumental resolution, and what kind of information one can hope to obtain.Comment: Research paper, 15 pages, 12 figures, 3 table

    CO Oxidation on a Pd(100)

    Get PDF
    A stagnation flow reactor has been designed and characterized for both experimental and modeling studies of single-crystal model catalysts in heterogeneous catalysis. Using CO oxidation over a Pd(100) single crystal as a showcase, we have employed planar laser-induced fluorescence (PLIF) to visualize the CO2 distribution over the catalyst under reaction conditions and subsequently used the 2D spatially resolved gas phase data to characterize the stagnation flow reactor. From a comparison of the experimental data and the stagnation flow model, it was found that characteristic stagnation flow can be achieved with the reactor. Furthermore, the combined stagnation flow/PLIF/modeling approach makes it possible to estimate the turnover frequency (TOF) of the catalytic surface from the measured CO2 concentration profiles above the surface and to predict the CO2, CO and O2 concentrations at the surface under reaction conditions

    An in situ set up for the detection of CO(2) from catalytic CO oxidation by using planar laser-induced fluorescence.

    Get PDF
    We report the first experiment carried out on an in situ setup, which allows for detection of CO(2) from catalytic CO oxidation close to a model catalyst under realistic reaction conditions by the means of planar laser-induced fluorescence (PLIF) in the mid-infrared spectral range. The onset of the catalytic reaction as a function of temperature was followed by PLIF in a steady state flow reactor. After taking into account the self-absorption of CO(2), a good agreement between the detected CO(2) fluorescence signal and the CO(2) mass spectrometry signal was shown. The observed difference to previously measured onset temperatures for the catalytic ignition is discussed and the potential impact of IR-PLIF as a detection technique in catalysis is outlined

    Local Density of States and Interface Effects in Semimetallic ErAs Nanoparticles Embedded in GaAs

    Full text link
    The atomic and electronic structures of ErAs nanoparticles embedded within a GaAs matrix are examined via cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/XSTS). The local density of states (LDOS) exhibits a finite minimum at the Fermi level demonstrating that the nanoparticles remain semimetallic despite the predictions of previous models of quantum confinement in ErAs. We also use XSTS to measure changes in the LDOS across the ErAs/GaAs interface and propose that the interface atomic structure results in electronic states that prevent the opening of a band gap.Comment: 9 pages, 3 figur

    Anisotropic strain variations during the confined growth of Au nanowires

    Full text link
    The electrochemical growth of Au nanowires in a template of nano-porous anodic aluminum oxide was investigated in situ by means of grazing-incidence transmission small- and wide-angle x-ray scattering (GTSAXS and GTWAXS), x-ray fluorescence (XRF) and 2-dimensional surface optical reflectance (2D-SOR). The XRF and the overall intensity of the GTWAXS patterns as a function of time were used to monitor the progress of the electrodeposition. Furthermore, we extracted powder diffraction patterns in the direction of growth and in the direction of confinement to follow the evolution of the direction-dependent strain. Quite rapidly after the beginning of the electrodeposition, the strain became tensile in the vertical direction and compressive in the horizontal direction, which showed that the lattice deformation of the nanostructures can be artificially varied by an appropriate choice of the deposition time. By alternating sequences of electrodeposition to sequences of rest, we observed fluctuations of the lattice parameter in the direction of growth, attributed to stress caused by electromigration.. Furthermore, the porous domain size calculated from the GTSAXS patterns was used to monitor how homogeneously the pores were filled.Comment: Short communication manuscript. Four figure

    Metastable Precursor Structures in Hydrogen-infused Super Duplex Stainless Steel Microstructure – An Operando Diffraction Experiment

    Get PDF
    We report the evolution of metastable precursor structures during hydrogen infusion in the near-surface region of a super duplex stainless steel. Grazing-incidence x-ray diffraction was employed to monitor, operando, the lattice degradation of the austenite and ferrite phases. Electrochemical hydrogen charging resulted in the splitting of the diffraction peaks of the austenite phase, suggesting the evolution of a metastable precursor structure. This may be explained by the formation of quasi-hydrides, which convert back into the austenite parent structure during hydrogen effusion. The ferrite showed less lattice deformation than the austenite and no phase transformation

    Formation and Structure of Graphene Waves on Fe(110)

    Get PDF
    A very rich Fe-C phase diagram makes the formation of graphene on iron surfaces a challenging task. Here we demonstrate that the growth of graphene on epitaxial iron films can be realized by chemical vapor deposition at relatively low temperatures, and that the formation of carbides can be avoided in excess of the carbon-containing precursors. The resulting graphene monolayer creates a novel periodically corrugated pattern on Fe(110). Using low-energy electron microscopy and scanning tunneling microscopy, we show that it is modulated in one dimension forming long waves with a period of similar to 4 nm parallel to the [001] direction of the substrate, with an additional height modulation along the wave crests. The observed topography of the graphene/Fe superstructure is well reproduced by density functional theory calculations, and found to result from a unique combination of the lattice mismatch and strong interfacial interaction, as probed by core-level photoemission and x-ray absorption spectroscopy

    In situ\textit{In situ} hydride breathing during the template-assisted electrodeposition of Pd nanowires

    Get PDF
    We investigated the structural evolution of electrochemically fabricated Pd nanowires in situ\textit{in situ} by means of grazing-incidence transmission small- and wide-angle x-ray scattering (GTSAXS and GTWAXS), x-ray fluorescence (XRF) and 2-dimensional surface optical reflectance (2D-SOR). This shows how electrodeposition and the hydrogen evolution reaction (HER) compete and interact during Pd electrodepositon. During the bottom-up growth of the nanowires, we show that β\beta-phase Pd hydride is formed. Suspending the electrodeposition then leads to a phase transition from β\beta- to α\alpha-phase Pd hydride. Additionally, we find that grain coalescence later hinders the incorporation of hydrogen in the Pd unit cell. GTSAXS and 2D-SOR provide complementary information on the volume fraction of the pores occupied by Pd, while XRF was used to monitor the amount of Pd electrodeposited.Comment: 17 pages, 11 figures, 4 appendice
    corecore