25 research outputs found
Characterization of soluble forms of NCAM
AbstractNeural cell adhesion molecule (NCAM) has been described as a family of membrane glycoproteins. However, soluble NCAM immunoreactivity has long been recognized. We here show that soluble NCAM is composed of two quantitatively major polypeptides of Mr 180 000 and 115 000 and two minor components of Mr 160 000 and 145 000. Soluble NCAM was immunochemically identical to membrane NCAM, was polysialylated and carried the HNK-1 epitope. It only constituted 0.8% of total NCAM in newborn rat brain. Soluble NCAM appeared in neuronal cell culture medium 15–30 min after the start of synthesis preceding accumulation of membrane-associated NCAM on the cell surface. This indicates that soluble NCAM contains a secreted component
Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease
BACKGROUND:
Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes.
METHODS:
We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization.
RESULTS:
During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events.
CONCLUSIONS:
Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)
Pharmacokinetics and splenic accumulation of N-acetylamino-3-chloro-N-(2-diethylamino-ethyl) benzamide after a single administration to rats.
The purpose of this study was to measure the pharmacokinetics and tissue accumulation of N-acetylamino-3-chloro-N-(2-diethylamino-ethyl) benzamide (NACPA) after oral or intravenous administration at a single dose of 25 mg/kg to female W/Fu rats. The serum pharmacokinetics of NACPA were characterized by rapid absorption, distribution and elimination. However, in comparison with its parent compound, 4-amino-3-chloro-N-(2-diethylamino-ethyl) benzamide (3-CPA), NACPA displayed a higher Cmax (mean+/-SD, 201+/-21 vs 33.6+/-0.5 nmol/ml, p < 0.05), and a longer elimination half-life (50+/-0.8 vs 36.6+/-1.1 min, p < 0.05) following intravenous administration. Bioavailability of NACPA was significantly greater than that of 3-CPA (50% compared with 14%, p < 0.05). The tissue accumulation of NACPA was generally higher than that of 3-CPA. NACPA was deposited at higher concentrations in the spleen than in the kidney and liver. Cellular pharmacokinetics indicated that NACPA accumulated more readily in lymphocyte related cells than in liver related cells. Furthermore, incubation of human peripheral lymphocytes with NACPA resulted in inhibition of lymphocyte proliferation, INF-gamma production and chemotaxis. All these results suggest that NACPA may be a good candidate drug for oral administration for immune modulatio
LEPREL1, a novel ER and Golgi resident member of the Leprecan family.
We have identified a novel protein, Leprecan-like 1 (LEPREL1), with profound similarity to the Leprecan family of proteoglycans. The genomic organization of the Leprecan gene family was found to be highly conserved. Expression analysis shows that LEPREL1 is expressed in most tissues as a 3.4 kb transcript encoding an 80 kDa protein. A LEPREL1 specific antibody stains many cell types including adipocytes and neuroendocrine cells of the gastrointestinal epithelium. Muscle tissue contains a specific 6.5 kb transcript and a 200 kDa protein. The 3.4 kb LEPREL1 transcript encodes a 708 amino acid protein containing a signal sequence, four tetratricopeptide repeats (TPRs), a leucine zipper, a P-loop, a prolyl 4-hydroxylase α domain (P4Hα), and a C-terminal KDEL ER-retention motif. LEPREL1 is localized to the ER and Golgi network and over-expressing it affects normal protein disulfide isomerase staining patterns in the ER
A randomized cross-over trial on the direct effects of oxygen supplementation therapy using different devices on cycle endurance in hypoxemic patients with Interstitial Lung Disease.
BackgroundIn patients with interstitial lung disease (ILD) a cardinal feature is exercise intolerance, often associated with significant dyspnea and severe hypoxemia. Supplemental oxygen therapy may be offered during exercise. The Oxymizer is a nasal cannula with an incorporated reservoir with the potential to deliver higher oxygen doses to the patient.ObjectiveThe primary aim was to investigate the effect of supplemental oxygen delivered via Oxymizer compared to a conventional nasal cannula (CNC) in patients with ILD during constant work rate tests (CWRT). Secondary aim was to evaluate effects on oxygen saturation (SpO2), dyspnea and heart rate at isotime.MethodsIn this randomized crossover study 24 ILD patients established on long-term oxygen treatment were included. Patients performed four cycling CWRT at 70% of their peak work rate; twice with the Oxymizer and twice with the CNC.ResultsTwenty-one patients finished all CWRTs (age 60 ± 10.9 years, VC 55.4 ± 23.0%predicted). Cycle endurance time was significantly higher while using the Oxymizer compared to CNC (718 ± 485 vs. 680 ± 579 seconds, p = 0.02), and SpO2 at isotime was significantly higher while using the Oxymizer (85.5 ± 6.7 vs. 82.8± 7.2, p = 0.01). Fifteen of the 21 (71%) patients cycled longer with the Oxymizer. There were no significant differences for dyspnea and heart rate.ConclusionsSupplemental oxygen provided by the Oxymizer significantly, but modestly, improved cycle endurance time and SpO2 at isotime in ILD patients compared to CNC
Insulin induces SOCS-6 expression and its binding to the p85 monomer of phosphoinositide 3-kinase, resulting in improvement in glucose metabolism
The suppressors of cytokine signaling ( SOCS) family is thought to act largely as a negative regulator of signaling by cytokines and some growth factors. Surprisingly, the SOCS-6 transgenics had no significant defects in the cytokine signaling and hematopoietic system but displayed significant improvements in glucose metabolism. Insulin stimulation of Akt/protein kinase B was also potentiated. Biochemical analysis showed that, after insulin stimulation, SOCS-6 interacted with the monomeric p85 subunit of class-Ia phosphoinositide ( PI) 3-kinase but not with p85/p110 dimers. Furthermore, SOCS-6 expression is transiently increased by serum and insulin in normal fibroblasts. However, both the mRNA and protein of SOCS-6 were rapidly degraded after induction by insulin. The degradation of the SOCS-6 protein was partially inhibited by a proteasome inhibitor, suggesting a proteasome-mediated degradation mechanism. In contrast, SOCS-6- associated p85 was not degraded and could be recruited to the newly synthesized SOCS-6 molecules in the presence of insulin, suggesting that SOCS-6 expression and its interaction with p85, but not the degradation, is regulated by insulin. The phenotype of SOCS-6 transgenic mice bears a striking resemblance to p85 knock-out mouse models in which glucose metabolism stimulated by insulin is significantly improved despite reduced activation of PI 3-kinase. This suggests that monomeric p85 might play a physiologically important role in attenuating signaling through PI 3-kinase-dependent pathways in unstimulated cells. Therefore, our results indicate that SOCS-6 may provide a dynamically regulated mechanism by which insulin can transiently overcome the negative effects that p85 monomers have on signaling via PI 3-kinase-dependent signaling pathways