17 research outputs found
Novel virus discovery and genome reconstruction from field RNA samples reveals highly divergent viruses in dipteran hosts.
We investigated whether small RNA (sRNA) sequenced from field-collected mosquitoes and chironomids (Diptera) can be used as a proxy signature of viral prevalence within a range of species and viral groups, using sRNAs sequenced from wild-caught specimens, to inform total RNA deep sequencing of samples of particular interest. Using this strategy, we sequenced from adult Anopheles maculipennis s.l. mosquitoes the apparently nearly complete genome of one previously undescribed virus related to chronic bee paralysis virus, and, from a pool of Ochlerotatus caspius and Oc. detritus mosquitoes, a nearly complete entomobirnavirus genome. We also reconstructed long sequences (1503-6557 nt) related to at least nine other viruses. Crucially, several of the sequences detected were reconstructed from host organisms highly divergent from those in which related viruses have been previously isolated or discovered. It is clear that viral transmission and maintenance cycles in nature are likely to be significantly more complex and taxonomically diverse than previously expected
Taxonomy, biodiversity, and ecology of Apusozoa (Protozoa)
Apusozoa (Protozoa) is a phylum of heterotrophic gliding zooflagellates of unknown taxonomic affiliation, commonly observed in environmental samples. Almost nothing was previously known about the diversity and ecology of apusozoan species though, as bacterivores, they are probably important functional constituents within microbial assemblages.We explored apusozoan morphological and genetic diversity, ecology, and related methodological questions. By culturing environmental material from a range of habitats, we isolated and maintained monocultures of both previously described apusozoan orders, Apusomonadida (apusomonads) and Planomonadida (planomonads). For planomonads, we present a revised taxonomy based on morphology, ultrastructure, and 18S rDNA genetic differences. We describe nine new species and new genera Nutomonas and Fabomonas, and demonstrate ITS2 rDNA secondary structure analysis for species delineation.During our culturing effort, we also isolated two genotypes of a previously unknown flagellate group, shown here to belong to a novel third apusozoan order, Mantamonadida. We designed molecular probes specific to all three orders and applied them to environmental DNA, detecting novel 18S and ITS1 rDNA lineages in a range of habitats.We mined publically available metagenomic and metatranscriptomic sequence databases using 18S rDNA of described species as seeds, identifying hundreds of sequences with affinities to all three orders. Phylogenies featuring newly retrieved lineages with previously described species suggest that direct sequencing of transcriptomic material is more effective than amplification-dependent methods at detecting rare cells in mixed microbial assemblages.Finally, to test potential future applications of our newly isolated strains, we ran microcosm experiments examining the effect of protozoan (Cercozoa) grazing on the structure of bacterial assemblages, demonstrating that closely related and morphologically similar species can have different impacts on their prey base.Taken together, by combining traditional culturing and modern molecular methods, this thesis drastically improves our understanding of apusozoan diversity and sets the scene for future work using next-generation sequencing and ecologically driven functional experiments.</p
Taxonomy, biodiversity, and ecology of Apusozoa (Protozoa)
Apusozoa (Protozoa) is a phylum of heterotrophic gliding zooflagellates of unknown taxonomic affiliation, commonly observed in environmental samples. Almost nothing was previously known about the diversity and ecology of apusozoan species though, as bacterivores, they are probably important functional constituents within microbial assemblages. We explored apusozoan morphological and genetic diversity, ecology, and related methodological questions. By culturing environmental material from a range of habitats, we isolated and maintained monocultures of both previously described apusozoan orders, Apusomonadida (apusomonads) and Planomonadida (planomonads). For planomonads, we present a revised taxonomy based on morphology, ultrastructure, and 18S rDNA genetic differences. We describe nine new species and new genera Nutomonas and Fabomonas, and demonstrate ITS2 rDNA secondary structure analysis for species delineation. During our culturing effort, we also isolated two genotypes of a previously unknown flagellate group, shown here to belong to a novel third apusozoan order, Mantamonadida. We designed molecular probes specific to all three orders and applied them to environmental DNA, detecting novel 18S and ITS1 rDNA lineages in a range of habitats. We mined publically available metagenomic and metatranscriptomic sequence databases using 18S rDNA of described species as seeds, identifying hundreds of sequences with affinities to all three orders. Phylogenies featuring newly retrieved lineages with previously described species suggest that direct sequencing of transcriptomic material is more effective than amplification-dependent methods at detecting rare cells in mixed microbial assemblages. Finally, to test potential future applications of our newly isolated strains, we ran microcosm experiments examining the effect of protozoan (Cercozoa) grazing on the structure of bacterial assemblages, demonstrating that closely related and morphologically similar species can have different impacts on their prey base. Taken together, by combining traditional culturing and modern molecular methods, this thesis drastically improves our understanding of apusozoan diversity and sets the scene for future work using next-generation sequencing and ecologically driven functional experiments.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Recommended from our members
Novel virus discovery and genome reconstruction from field RNA samples reveals highly divergent viruses in dipteran hosts.
We investigated whether small RNA (sRNA) sequenced from field-collected mosquitoes and chironomids (Diptera) can be used as a proxy signature of viral prevalence within a range of species and viral groups, using sRNAs sequenced from wild-caught specimens, to inform total RNA deep sequencing of samples of particular interest. Using this strategy, we sequenced from adult Anopheles maculipennis s.l. mosquitoes the apparently nearly complete genome of one previously undescribed virus related to chronic bee paralysis virus, and, from a pool of Ochlerotatus caspius and Oc. detritus mosquitoes, a nearly complete entomobirnavirus genome. We also reconstructed long sequences (1503-6557 nt) related to at least nine other viruses. Crucially, several of the sequences detected were reconstructed from host organisms highly divergent from those in which related viruses have been previously isolated or discovered. It is clear that viral transmission and maintenance cycles in nature are likely to be significantly more complex and taxonomically diverse than previously expected
Codon usage statistics for the RdRp ORFs in the narnavirus-like contigs KF298275 and KF298276.
<p>In-frame forward read-direction stop codons (red) are necessarily absent. Reverse complements of in-frame but reverse read-direction stop codons are highlighted in orange; a single UUA codon corresponds to the UAA stop codon of the >1000-codon reverse-read-direction ORF in KF298276.</p
Common nucleotide polymorphisms observed in AACV and CAZV assemblies.
<p>Only nucleotide variations with a frequency in the mapped reads of at least 20% of the most common nucleotide present at that position are shown. The nucleotide present in the chosen reference assembly is shown first.</p
Neighbour-joining (NJ) phylogenetic tree for the orbivirus-like KF298266 and KF298273 and related sequences.
<p>Nodes with <80% bootstrap support have been collapsed.</p
Analysis of CBPV and AACV sequences.
<p>(A) Map of the CBPV RNA1 genome segment. The region covered by contig KF298264 (AACV) is indicated by the orange bar. The read coverage density is indicated in green. (B) Analysis of variability at synonymous sites in an alignment of the currently available full-length CBPV sequences (EU122229 and EU122231) and AACV (KF298264). Shown are the degree of variability at synonymous sites in a 75-codon sliding window, relative to the average in the ORF1-ORF3 frameshift fusion (obs/exp), and the corresponding statistical significance (<i>p</i>-value). (C) Positions of stop codons in the three forward reading frames in the three sequences (KF298264 - top row of triangles in each panel; CBPV EU122231 and EU122229 - bottom two rows of triangles in each panel). (D, E and F) Corresponding figures for RNA2 (KF298265 - top row of triangles in each panel; CBPV EU122232 and EU122230 - bottom two rows of triangles in each panel). Note that AACV RNA2 lacks a homolog of the CBPV ORF1, and has a shorter 3' UTR than CBPV, as indicated by gaps in the orange bar.</p
Alignments of entomobirnavirus 5' and 3' UTR sequences, indicating that the CAZV sequences are nearly complete.
<p>Initiation and termination codons are highlighted in green and red respectively. Note that both entomobirnavirus segments have upstream AUG codons, although it is not known whether these are utilised. ESV - JN589003/JN589002, CYV - JQ659254/JQ659255, MXV - JX403941/JX403942, CAZV - KF298271/KF298272.</p