16 research outputs found

    Renin-Angiotensin System on Reproductive Biology

    Get PDF
    In the female reproductive system, angiotensin II (ANG II) is a potential signaling molecule involved in ovarian follicle development, which acts through two transmembrane receptors. Within the ovarian follicle, there appear to be species differences in the precise pattern of localization of AGTR2 protein and it has an important role in in vitro maturation of oocytes in mammals. The infusion of ANG II induced ovulation in rabbits and the use of ANG II antagonists inhibited ovulation in rabbits, rats, and cattle. In fetal ovaries, AGTR2 protein was detected in ovigerous cords and preantral follicles throughout porcine and bovine gestation. In the oviduct, ANG II is responsible for the orchestration of the transport of gametes. In the male reproductive system, there is considerable evidence for the local synthesis of components of renin-angiotensin system (RAS) in male reproductive tissues. The roles of RAS in local processes at these sites are still uncertain, although there is evidence for involvement in tubular contractility, spermatogenesis, sperm maturation, capacitation, acrosomal exocytosis, and fertilization

    State of the art on animal embryonic chimeras

    No full text
    Embryonic chimerism is generally used in basic research and in vivo diagnosis of undifferentiated embryonic stem cells (ESC), mostly using mice embryos, although there have been reports in the literature on using rat, rabbit, sheep, chicken, primate, bovine, goat and pig embryos. Several techniques can currently be used to produce chimeric embryos, including microinjection, co-culture with ESC, fusion and aggregation. Although microinjection is the most commonly used method in mice, the mere aggregation of embryos with ESC may result in viable chimeras and be as efficient as microinjection. In mice, this chimerism technique has been shown to have the advantage of aggregating embryos in different stages of development with different ploidy, in addition to using ESC in the tetraploid complementation assay. Compared to other techniques for producing chimeras, the aggregation technique is a cheaper, faster and easier methodology to be performed. Moreover, aggregation can be simplified by chemically removing the zona pellucida with pronase or acidic Tyrode’s solution and be enhanced by using the Well of the Well culture system in combination with adhesion molecules, such as phytohemagglutinin. The most commonly used stages for chimerism by aggregation are those that precede the full compaction of the morula. In these stages, embryos have low-tension adherent junctions at the tangential point between two blastomeres. During the embryonic development of mice, the inner cell mass differentiates into epiblast and hypoblast. These layers will originate the fetal tissues and a portion of the extraembryonic tissues (yolk sac, allantois and amnion), whereas the trophectoderm (TE) gives rise to the chorion. A functional TE is essential for the complex molecular communications that occur between the embryo and the uterus. Embryos produced by somatic cell nuclear transfer, such as commercial cattle clones or endangered species, are subject to large fetal and neonatal losses. Hence embryo complementation with heterologous TE could be of assistance to decrease these losses and might as well assist development of high-value embryos in other approaches

    Differential expression of members of the IGF system in OPU-derived oocytes from Nelore (Bos indicus) and Holstein (Bos taurus) cows

    No full text
    The insulin-like growth factor (IGF) system is related to quality of oocytes and embryos. The aim of this study was to investigate the mRNA levels of IGF1 and IGF2 and their receptors, IGFR1 and IGFR2, as well as IGFBP2, IGFBP4, and PAPP-A in oocytes from Nelore compared to Holstein cows. Pools of oocytes (20 oocytes/pool) from Nelore (n=8 pools) and Holstein (n=4 pools) were obtained via ovum pick-up (OPU, 10 sessions) and cumulus cells and zona pellucida were removed. The pools were submitted to total RNA extraction. Expression of members of the IGF system was assessed by real time RT-PCR. The mRNA expression of IGF1 and IGF2, IGFR1 and IGFR2, IGFBP2 and IGFBP4 was significantly higher (P<0.01) in oocytes from Holstein whereas the expression of PAPP-A was significantly higher (P<0.05) in oocytes from Nelore cows. The high PAPP-A expression and the low expression of IGFBP2 and IGFBP4 are associated with more efficient degradation of IGFBPs, which results in greater bioavailability of IGF in Nelore oocytes when compared to the Holstein. © 2013 Elsevier B.V

    Ovarian superstimulation using FSH combined with equine chorionic gonadotropin (eCG) upregulates mRNA encoding proteins involved with LH receptor intracellular signaling in granulosa cells from Nelore cows

    No full text
    The LH plays a key role in controlling physiological processes in the ovary acting via LH receptor (LHR). In general, the effects of LHR on the regulation of granulosa cell differentiation are mediated mainly via the Gs-protein/adenylyl cyclase/cAMP system; however, the LHR activation could also induce phospholipase C (PLC)/inositol trisphosphate (IP3) via Gq/11 system. Additionally, the expression of G-proteins (GNAS, GNAQ, and GNA11) and PLC b has been showed in bovine antral follicle, concomitant with an increase in LHR expression. To gain insight into the effects of superstimulation with FSH (P-36 protocol) or FSH combined with equine chorionic gonadotropin (eCG; P-36/eCG protocol) on the mRNA expression of proteins involved in LHR signaling in bovine granulosa cells, Nelore cows (Bos indicus) were treated with two superstimulatory protocols: P-36 protocol or P-36/eCG protocol (replacement of the FSH by eCG administration on the last day of treatment). Nonsuperstimulated cows were only submitted to estrous synchronization without ovarian superstimulation. The granulosa cells were harvested from follicles and mRNA abundance of GNAS, GNAQ, GNA11, PLCB1, PLCB, PLCB4, and adenylyl cyclase isoforms (ADCY3, ADCY4, ADCY6, ADCY8, and ADCY9) was measured by real-time reserve transcription followed by polymerase chain reaction. No differences on mRNA abundance of target genes were observed in granulosa cells of cows submitted to P-36 protocol compared with control group. However, the cows submitted to P-36/eCG protocol showed upregulation on the mRNA abundance of target genes (except ADCY8) in granulosa cells. Although the P-36 protocol did not regulate mRNA expression of the proteins involved in the signaling mechanisms of the cAMP and IP3 systems, the constant presence of GNAS, GNAQ, GNA11, PLCB1, PLCB3, PLCB4, and adenylyl cyclase isoforms (ADCY3, ADCY4, ADCY6, and ADCY9) mRNA and the upregulation of these genes in granulosa cells from cows submitted to P-36/eCG protocol reinforce the participation of Gq/11/PLC/IP3 signaling as well as Gs-protein/adenylyl cyclase/cAMP system on LHR pathways during bovine granulosa cell differentiation submitted to superstimulatory treatmentsTheriogenologyVolume 82, Issue 9, December 2014, Pages 1199 1205Please cite this article as: Castilho ACS, Nogueira MFG, Fontes PK, Machado MF, Satrapa RA, Razza EM, Barros CM, Ovarian superstimulation using FSH combined with equine chorionic gonadotropin (eCG) upregulates mRNA encoding proteins involved with LH receptor intracellular signaling in granulosa cells from Nelore cows, Theriogenology (2014), doi: 10.1016/j.theriogenology.2014.06.011.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Simulated physiological oocyte maturation has side effects on bovine oocytes and embryos

    No full text
    Made available in DSpace on 2019-10-06T16:05:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-03-15Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)InnovationsfondenPurpose: Oocyte maturation is a complex process involving nuclear and cytoplasmic modulations, during which oocytes acquire their ability to become fertilized and support embryonic development. The oocyte is apparently “primed” for maturation during its development in the dominant follicle. As bovine oocytes immediately resume meiosis when cultured, it was hypothesized that delaying resumption of meiosis with cyclic nucleotide modulators before in vitro maturation (IVM) would allow the oocytes to acquire improved developmental competence. Methods: We tested the Simulated Physiological Oocyte Maturation (SPOM) system that uses forskolin and 3-isobutyl-1-methylxanthine for 2 h prior to IVM against two different systems of conventional IVM (Con-IVM). We evaluated the ultrastructure of matured oocytes and blastocysts and also assessed the expression of 96 genes related to embryo quality in the blastocysts. Results: In summary, the SPOM system resulted in lower blastocyst rates than both Con-IVM systems (30 ± 9.1 vs. 35 ± 8.7; 29 ± 2.6 vs. 38 ± 2.8). Mature SPOM oocytes had significantly increased volume and number of vesicles, reduced volume and surface density of large smooth endoplasmic reticulum clusters, and lower number of mitochondria than Con-IVM oocytes. SPOM blastocysts showed only subtle differences with parallel undulations of adjacent trophectoderm plasma membranes and peripherally localized ribosomes in cells of the inner cell mass compared with Con-IVM blastocysts. SPOM blastocysts, however, displayed significant downregulation of genes related to embryonic developmental potential when compared to Con-IVM blastocysts. Conclusions: Our results show that the use of the current version of the SPOM system may have adverse effects on oocytes and blastocysts calling for optimized protocols for improving oocyte competence.Department of Pharmacology Institute of Bioscience São Paulo State University (UNESP), Distrito de Rubião Junior s/nDepartment of Animal Science Aarhus UniversityEmbryoTrans Biotech, Frederiksberg CDepartment of Bio and Health Informatics Technical University of Denmark, KemitorvetDepartment of Veterinary and Animal Sciences University of CopenhagenDepartment of Biological Sciences School of Sciences and Languages São Paulo State University (UNESP), Avenida Dom Antonio, 2100Department of Pharmacology Institute of Bioscience São Paulo State University (UNESP), Distrito de Rubião Junior s/nDepartment of Biological Sciences School of Sciences and Languages São Paulo State University (UNESP), Avenida Dom Antonio, 2100FAPESP: #12234099FAPESP: #12505332FAPESP: #1305083
    corecore