341 research outputs found
Intrauterine growth restriction and later cardiovascular function
Intrauterine growth restriction is one of the most common obstetric conditions, affecting 7-10% of fetuses. Affected fetuses are actually exposed in utero to an adverse environment during the highly critical time of development and may face life-long health consequences such as increased cardiovascular risk in adulthood. Already in utero, fetuses affected by growth restriction show remodeled hearts with signs of systolic and diastolic dysfunction. Cardiovascular remodeling persist into postnatal life, from the neonatal period to adolescence, suggesting a primary fetal cardiac programming that might explain the increased cardiovascular risk later in life. In this review we summarize the current evidence on fetal cardiovascular programming in fetuses affected by growth restriction, its consequences later and possible strategies from which they could benefit to reduce their cardiovascular risk
Long-term cardiovascular consequences of fetal growth restriction: biology, clinical implications, and opportunities for prevention of adult disease
In the modern world, cardiovascular disease is a leading cause of death for both men and women. Epidemiologic studies consistently have suggested an association between low birthweight and/or fetal growth restriction and increased rate of cardiovascular mortality in adulthood. Furthermore, experimental and clinical studies have demonstrated that sustained nutrient and oxygen restriction that are associated with fetal growth restriction activate adaptive cardiovascular changes that might explain this association. Fetal growth restriction results in metabolic programming that may increase the risk of metabolic syndrome and, consequently, of cardiovascular morbidity in the adult. In addition, fetal growth restriction is strongly associated with fetal cardiac and arterial remodeling and a subclinical state of cardiovascular dysfunction. The cardiovascular effects ocurring in fetal life, includes cardiac morphology changes, subclinical myocardial dysfunction, arterial remodeling, and impaired endothelial function, persist into childhood and adolescence. Importantly, these changes have been described in all clinical presentations of fetal growth restriction, from severe early- to milder late-onset forms. In this review we summarize the current evidence on the cardiovascular effects of fetal growth restriction, from subcellular to organ structure and function as well as from fetal to early postnatal life. Future research needs to elucidate whether and how early life cardiovascular remodeling persists into adulthood and determines the increased cardiovascular mortality rate described in epidemiologic studies
Differential correlations between maternal hair levels of tobacco and alcohol with fetal growth restriction clinical subtypes
Maternal exposure to tobacco and alcohol is a known cause, among others, for fetal growth restriction (FGR). Clinically, FGR can be subclassified into two forms: intrauterine growth restriction (IUGR) and small for gestational age (SGA), based on the severity of the growth retardation, and abnormal uterine artery Doppler or cerebro-placental ratio. This study aimed at investigating any differential correlation between maternal exposures to these toxins with the two clinical forms of FGR. Therefore, a case-control study was conducted in Barcelona, Spain. Sixty-four FGR subjects, who were further subclassified into IUGR (n = 36) and SGA (n = 28), and 89 subjects matched appropriate-for-gestational age (AGA), were included. The levels of nicotine (NIC) and ethyl glucuronide (EtG), biomarkers of tobacco and alcohol exposure, respectively, were assessed in the maternal hair in the third trimester. Our analysis showed 65% of the pregnant women consumed alcohol, 25% smoked, and 19% did both. The odds ratios (ORs) of IUGR were 21 times versus 14 times for being SGA with maternal heavy smoking, while with alcohol consumption the ORs for IUGR were 22 times versus 37 times for the SGA group. The differential correlations between these toxins with the two subtypes of FGR suggest different mechanisms influencing fetal weight. Our alarming data of alcohol consumption during pregnancy should be considered for further confirmation among Spanish women
Engraftment Potential of Adipose Tissue-Derived Human Mesenchymal Stem Cells After Transplantation in the Fetal Rabbit
Due to their favorable intrinsic features, including engraftment, differentiation, and immunomodulatory potential, adult mesenchymal stem cells (MSCs) have been proposed for therapeutic in utero intervention. Further improvement of such attributes for particular diseases might merely be achieved by ex vivo MSC genetic engineering previous to transplantation. Here, we evaluated for the first time the feasibility, biodistribution, long-term engraftment, and transgenic enhanced green fluorescent protein (EGFP) expression of genetically engineered human adipose tissue-derived MSCs (EGFP+-ASCs) after intra-amniotic xenotransplantation at E17 of gestation into our validated pregnant rabbit model. Overall, the procedure was safe (86.4% survival rate; absence of anatomical defects). Stable, low-level engraftment of EGFP+-ASCs was confirmed by assessing the presence of the pWT-EGFP lentiviral provirus in the young transplanted rabbit tissues. Accordingly, similar frequencies of provirus-positive animals were found at both 8 weeks (60%) and 16 weeks (66.7%) after in utero intervention. The presence of EGFP+-ASCs was more frequent in respiratory epithelia (lung and trachea), according to the route of administration. However, we were unable to detect EGFP expression, neither by real-time polymerase chain reaction nor by immunohistochemistry, in the provirus-positive tissues, suggesting EGFP transgene silencing mediated by epigenetic events. Moreover, we noticed lack of both host cellular immune responses against xenogeneic ASCs and humoral immune responses against transgenic EGFP. Therefore, the fetal microchimerism achieved by the EGFP+-ASCs in the young rabbit hosts indicates induction of donor-specific tolerance after fetal rabbit xenotransplantation, which should boost postnatal transplantation for the early treatment/prevention of many devastating congenital disorders
Motor and cortico-striatal-thalamic connectivity alterations in intrauterine growth restriction
BACKGROUND: Intrauterine growth restriction is associated with short-and long-term neurodevelopmental problems. Structural brain changes underlying these alterations have been described with the use of different magnetic resonance-based methods that include changes in whole structural brain networks. However, evaluation of specific brain circuits and its correlation with related functions has not been investigated in intrauterine growth restriction.OBJECTIVES: In this study, we aimed to investigate differences in tractography-related metrics in cortico-striatal-thalamic and motor networks in intrauterine growth restricted children and whether these parameters were related with their specific function in order to explore its potential use as an imaging biomarker of altered neurodevelopment.METHODS: We included a group of 24 intrauterine growth restriction subjects and 27 control subjects that were scanned at 1 year old; we acquired T1-weighted and 30 directions diffusion magnetic resonance images. Each subject brain was segmented in 93 regions with the use of anatomical automatic labeling atlas, and deterministic tractography was performed. Brain regions included in motor and cortico-striatal-thalamic networks were defined based in functional and anatomic criteria. Within the streamlines that resulted from the whole brain tractography, those belonging to each specific circuit were selected and tractography-related metrics that included number of streamlines, fractional anisotropy, and integrity were calculated for each network. We evaluated differences between both groups and further explored the correlation of these parameters with the results of socioemotional, cognitive, and motor scales from Bayley Scale at 2 years of age.RESULTS: Reduced fractional anisotropy (cortico-striatal-thalamic, 0.319 +/- 0.018 vs 0.315 +/- 0.015; P =.010; motor, 0.322 +/- 0.019 vs 0.319 +/- 0.020; P =.019) and integrity cortico-striatal-thalamic (0.407 +/- 0.040 vs 0.399 +/- 0.034; P =.018; motor, 0.417 +/- 0.044 vs 0.409 +/- 0.046; P =.016) in both networks were observed in the intrauterine growth restriction group, with no differences in number of streamlines. More importantly, strong specific correlation was found between tractography-related metrics and its relative function in both networks in intrauterine growth restricted children. Motor network metrics were correlated specifically with motor scale results (fractional anisotropy: rho = 0.857; integrity: rho = 0.740); cortico-striatal-thalamic network metrics were correlated with cognitive (fractional anisotropy: rho = 0.793; integrity, rho = 0.762) and socioemotional scale (fractional anisotropy: rho = 0.850; integrity: rho = 0.877).CONCLUSIONS: These results support the existence of altered brain connectivity in intrauterine growth restriction demonstrated by altered connectivity in motor and cortico-striatal-thalamic networks, with reduced fractional anisotropy and integrity. The specific correlation between tractography-related metrics and neurodevelopmental outcomes in intrauterine growth restriction shows the potential to use this approach to develop imaging biomarkers to predict specific neurodevelopmental outcome in infants who are at risk because of intrauterine growth restriction and other prenatal diseases
Nutritional intra-amniotic therapy increases survival in a rabbit model of fetal growth restriction
Objective To evaluate the perinatal effects of a prenatal therapy based on intra-amniotic nutritional supplementation in a rabbit model of intrauterine growth restriction (IUGR). Methods IUGR was surgically induced in pregnant rabbits at gestational day 25 by ligating 40-50% of uteroplacental vessels of each gestational sac. At the same time, modified-parenteral nutrition solution (containing glucose, amino acids and electrolytes) was injected into the amniotic sac of nearly half of the IUGR fetuses (IUGR-T group n = 106), whereas sham injections were performed in the rest of fetuses (IUGR group n = 118). A control group without IUGR induction but sham injection was also included (n = 115). Five days after the ligation procedure, a cesarean section was performed to evaluate fetal cardiac function, survival and birth weight. Results Survival was significantly improved in the IUGR fetuses that were treated with intra-amniotic nutritional supplementation as compared to non-treated IUGR animals (survival rate: controls 71% vs. IUGR 44% p = 0.003 and IUGR-T 63% vs. IUGR 44% p = 0.02), whereas, birth weight (controls mean 43g ± SD 9 vs. IUGR 36g ± SD 9 vs. IUGR-T 35g ± SD 8, p = 0.001) and fetal cardiac function were similar among the IUGR groups. Conclusion Intra-amniotic injection of a modified-parenteral nutrient solution appears to be a promising therapy for reducing mortality among IUGR. These results provide an opportunity to develop new intra-amniotic nutritional strategies to reach the fetus by bypassing the placental insufficienc
Clinical feasibility of quantitative ultrasound texture analysis: A robustness study using fetal lung ultrasound images
OBJECTIVES: To compare the robustness of several methods based on quantitative ultrasound (US) texture analysis to evaluate its feasibility for extracting features from US images to use as a clinical diagnostic tool. METHODS: We compared, ranked, and validated the robustness of 5 texture-based methods for extracting textural features from US images acquired under different conditions. For comparison and ranking purposes, we used 13,171 non-US images from widely known available databases (OUTEX [University of Oulu, Oulu, Finland] and PHOTEX [Texture Lab, Heriot-Watt University, Edinburgh, Scotland]), which were specifically acquired under different controlled parameters (illumination, resolution, and rotation) from 103 textures. The robustness of those methods with better results from the non-US images was validated by using 666 fetal lung US images acquired from singleton pregnancies. In this study, 2 similarity measurements (correlation and Chebyshev distances) were used to evaluate the repeatability of the features extracted from the same tissue images. RESULTS: Three of the 5 methods (gray-level co-occurrence matrix, local binary patterns, and rotation-invariant local phase quantization) had favorably robust performance when using the non-US database. In fact, these methods showed similarity values close to 0 for the acquisition variations and delineations. Results from the US database confirmed robustness for all of the evaluated methods (gray-level co-occurrence matrix, local binary patterns, and rotation-invariant local phase quantization) when comparing the same texture obtained from different regions of the image (proximal/distal lungs and US machine brand stratification). CONCLUSIONS: Our results confirmed that texture analysis can be robust (high similarity for different condition acquisitions) with potential to be included as a clinical tool
Evaluation of an improved tool for non-invasive prediction of neonatal respiratory morbidity based on fully automated fetal lung ultrasound analysis
The objective of this study was to evaluate the performance of a new version of quantusFLM®, a software tool for prediction of neonatal respiratory morbidity (NRM) by ultrasound, which incorporates a fully automated fetal lung delineation based on Deep Learning techniques. A set of 790 fetal lung ultrasound images obtained at 24 + 0-38 + 6 weeks' gestation was evaluated. Perinatal outcomes and the occurrence of NRM were recorded. quantusFLM® version 3.0 was applied to all images to automatically delineate the fetal lung and predict NRM risk. The test was compared with the same technology but using a manual delineation of the fetal lung, and with a scenario where only gestational age was available. The software predicted NRM with a sensitivity, specificity, and positive and negative predictive value of 71.0%, 94.7%, 67.9%, and 95.4%, respectively, with an accuracy of 91.5%. The accuracy for predicting NRM obtained with the same texture analysis but using a manual delineation of the lung was 90.3%, and using only gestational age was 75.6%. To sum up, automated and non-invasive software predicted NRM with a performance similar to that reported for tests based on amniotic fluid analysis and much greater than that of gestational age alone
Ex-vivo mechanical sealing properties and toxicity of a bioadhesive patch as sealing system for fetal membrane iatrogenic defects
Preterm prelabor rupture of membranes (PPROM) is the most frequent complication of fetal surgery. Strategies to seal the membrane defect created by fetoscopy aiming to reduce the occurrence of PPROM have been attempted with little success. The objective of this study was to evaluate the ex-vivo mechanical sealing properties and toxicity of four different bioadhesives integrated in semi-rigid patches for fetal membranes. We performed and ex-vivo study using term human fetal membranes to compare the four integrated patches composed of silicone or silicone-polyurethane combined with dopaminated-hyaluronic acid or hydroxypropyl methylcellulose (HPMC). For mechanical sealing properties, membranes were mounted in a multiaxial inflation device with saline, perforated and sealed with the 4 combinations. We measured bursting pressure and maximum pressure free of leakage (n = 8). For toxicity, an organ culture of membranes sealed with the patches was used to measure pyknotic index (PI) and lactate dehydrogenase (LDH) concentration (n = 5). All bioadhesives achieved appropriate bursting pressures, but only HPMC forms achieved high maximum pressures free of leakage. Concerning toxicity, bioadhesives showed low PI and LDH levels, suggesting no cell toxicity. We conclude that a semi-rigid patch coated with HPMC achieved ex-vivo sealing of iatrogenic defects in fetal membranes with no signs of cell toxicity. These results warrant further research addressing long-term adhesiveness and feasibility as a sealing system for fetoscopy
Mid-trimester cervical consistency index and cervical length to predict spontaneous preterm birth in a high-risk population
Background: Short cervical length (CL) has not been shown to be adequate as a single predictor of spontaneous preterm birth (sPTB) in high-risk pregnancies. Objective: The objective of this study was to evaluate the performance of the mid-trimester cervical consistency index (CCI) to predict sPTB in a cohort of high-risk pregnancies and to compare the results with those obtained with the CL. Study Design: Prospective cohort study including high-risk singleton pregnancies between 19 +0 and 24 +6 weeks. The ratio between the anteroposterior diameter of the uterine cervix at maximum compression and at rest was calculated offline to obtain the CCI. Results: Eighty-two high sPTB risk women were included. CCI (%) was significantly reduced in women who delivered <37 +0 weeks compared with those who delivered at term, while CL was not. The area under the curve (AUC) of the CCI to predict sPTB <37 +0 weeks was 0.73 (95% confidence interval [CI], 0.61-0.85), being 0.51 (95% CI, 0.35-0.67), p = 0.03 for CL. The AUC of the CCI to predict sPTB <34 +0 weeks was 0.68 (95% CI, 0.54-0.82), being 0.49 (95% CI, 0.29-0.69), p = 0.06 for CL. Conclusion: CCI performed better than sonographic CL to predict sPTB. Due to the limited predictive capacity of these two measurements, other tools are still needed to better identify women at increased risk
- …