3 research outputs found

    A human brainstem glioma xenograft model enabled for bioluminescence imaging

    Get PDF
    Despite the use of radiation and chemotherapy, the prognosis for children with diffuse brainstem gliomas is extremely poor. There is a need for relevant brainstem tumor models that can be used to test new therapeutic agents and delivery systems in pre-clinical studies. We report the development of a brainstem-tumor model in rats and the application of bioluminescence imaging (BLI) for monitoring tumor growth and response to therapy as part of this model. Luciferase-modified human glioblastoma cells from five different tumor cell sources (either cell lines or serially-passaged xenografts) were implanted into the pontine tegmentum of athymic rats using an implantable guide-screw system. Tumor growth was monitored by BLI and tumor volume was calculated by three-dimensional measurements from serial histopathologic sections. To evaluate if this model would allow detection of therapeutic response, rats bearing brainstem U-87 MG or GS2 glioblastoma xenografts were treated with the DNA methylating agent temozolomide (TMZ). For each of the tumor cell sources tested, BLI monitoring revealed progressive tumor growth in all animals, and symptoms caused by tumor burden were evident 26–29 days after implantation of U-87 MG, U-251 MG, GBM6, and GBM14 cells, and 37–47 days after implantation of GS2 cells. Histopathologic analysis revealed tumor growth within the pons in all rats and BLI correlated quantitatively with tumor volume. Variable infiltration was evident among the different tumors, with GS2 tumor cells exhibiting the greatest degree of infiltration. TMZ treatment groups were included for experiments involving U-87 MG and GS2 cells, and in each case TMZ delayed tumor growth, as indicated by BLI monitoring, and significantly extended survival of animal subjects. Our results demonstrate the development of a brainstem tumor model in athymic rats, in which tumor growth and response to therapy can be accurately monitored by BLI. This model is well suited for pre-clinical testing of therapeutics that are being considered for treatment of patients with brainstem tumors

    An orthotopic skull base model of malignant meningioma

    No full text
    Meningioma tumor growth involves the subarachnoid space that contains the cerebrospinal fluid. Modeling tumor growth in this microenvironment has been associated with widespread leptomeningeal dissemination, which is uncharacteristic of human meningiomas. Consequently, survival times and tumor properties are varied, limiting their utility in testing experimental therapies. We report the development and characterization of a reproducible orthotopic skull-base meningioma model in athymic mice using the IOMM-Lee cell line. Localized tumor growth was obtained by using optimal cell densities and matrigel as the implantation medium. Survival times were within a narrow range of 17-21 days. The xenografts grew locally compressing surrounding brain tissue. These tumors had histopathologic characteristics of anaplastic meningiomas including high cellularity, nuclear pleomorphism, cellular pattern loss, necrosis and conspicuous mitosis. Similar to human meningiomas, considerable invasion of the dura and skull and some invasion of adjacent brain along perivascular tracts were observed. The pattern of hypoxia was also similar to human malignant meningiomas. We use bioluminescent imaging to non-invasively monitor the growth of the xenografts and determine the survival benefit from temozolomide treatment. Thus, we describe a malignant meningioma model system that will be useful for investigating the biology of meningiomas and for preclinical assessment of therapeutic agents
    corecore