1 research outputs found

    Transient Kinetics and Quantum Yield Studies of Nanocrystalline α‑Phenyl-Substituted Ketones: Sorting Out Reactions from Singlet and Triplet Excited States

    No full text
    Recent work has shown that diarylmethyl radicals generated by pulsed laser excitation in nanocrystalline (NC) suspensions of tetraarylacetones constitute a valuable probe for the detailed mechanistic analysis of the solid-state photodecarbonylation reaction. Using a combination of reaction quantum yields and laser flash photolysis in nanocrystalline suspensions of ketones with different substituents on one of the α-carbons, we are able to suggest with confidence that a significant fraction of the initial α-cleavage reaction takes place from the ketone singlet excited state, that the originally formed diarylmethyl-acyl radical pair loses CO in the crystal with time constants in the sub-nanosecond regime, and that the secondary bis­(diarylmethyl) triplet radical pair has a lifetime limited by the rate of intersystem crossing of ca. 70 ns
    corecore