11 research outputs found

    Drug Side-Effect Prediction Based on the Integration of Chemical and Biological Spaces

    No full text
    Drug side-effects, or adverse drug reactions, have become a major public health concern and remain one of the main causes of drug failure and of drug withdrawal once they have reached the market. Therefore, the identification of potential severe side-effects is a challenging issue. In this paper, we develop a new method to predict potential side-effect profiles of drug candidate molecules based on their chemical structures and target protein information on a large scale. We propose several extensions of kernel regression model for multiple responses to deal with heterogeneous data sources. The originality lies in the integration of the chemical space of drug chemical structures and the biological space of drug target proteins in a unified framework. As a result, we demonstrate the usefulness of the proposed method on the simultaneous prediction of 969 side-effects for approved drugs from their chemical substructure and target protein profiles and show that the prediction accuracy consistently improves owing to the proposed regression model and integration of chemical and biological information. We also conduct a comprehensive side-effect prediction for uncharacterized drug molecules stored in DrugBank and confirm interesting predictions using independent information sources. The proposed method is expected to be useful at many stages of the drug development process

    Drug Side-Effect Prediction Based on the Integration of Chemical and Biological Spaces

    No full text
    Drug side-effects, or adverse drug reactions, have become a major public health concern and remain one of the main causes of drug failure and of drug withdrawal once they have reached the market. Therefore, the identification of potential severe side-effects is a challenging issue. In this paper, we develop a new method to predict potential side-effect profiles of drug candidate molecules based on their chemical structures and target protein information on a large scale. We propose several extensions of kernel regression model for multiple responses to deal with heterogeneous data sources. The originality lies in the integration of the chemical space of drug chemical structures and the biological space of drug target proteins in a unified framework. As a result, we demonstrate the usefulness of the proposed method on the simultaneous prediction of 969 side-effects for approved drugs from their chemical substructure and target protein profiles and show that the prediction accuracy consistently improves owing to the proposed regression model and integration of chemical and biological information. We also conduct a comprehensive side-effect prediction for uncharacterized drug molecules stored in DrugBank and confirm interesting predictions using independent information sources. The proposed method is expected to be useful at many stages of the drug development process

    Chrysanthemum corymbiferum

    No full text
    Drug side-effects, or adverse drug reactions, have become a major public health concern and remain one of the main causes of drug failure and of drug withdrawal once they have reached the market. Therefore, the identification of potential severe side-effects is a challenging issue. In this paper, we develop a new method to predict potential side-effect profiles of drug candidate molecules based on their chemical structures and target protein information on a large scale. We propose several extensions of kernel regression model for multiple responses to deal with heterogeneous data sources. The originality lies in the integration of the chemical space of drug chemical structures and the biological space of drug target proteins in a unified framework. As a result, we demonstrate the usefulness of the proposed method on the simultaneous prediction of 969 side-effects for approved drugs from their chemical substructure and target protein profiles and show that the prediction accuracy consistently improves owing to the proposed regression model and integration of chemical and biological information. We also conduct a comprehensive side-effect prediction for uncharacterized drug molecules stored in DrugBank and confirm interesting predictions using independent information sources. The proposed method is expected to be useful at many stages of the drug development process

    Drug Side-Effect Prediction Based on the Integration of Chemical and Biological Spaces

    No full text
    Drug side-effects, or adverse drug reactions, have become a major public health concern and remain one of the main causes of drug failure and of drug withdrawal once they have reached the market. Therefore, the identification of potential severe side-effects is a challenging issue. In this paper, we develop a new method to predict potential side-effect profiles of drug candidate molecules based on their chemical structures and target protein information on a large scale. We propose several extensions of kernel regression model for multiple responses to deal with heterogeneous data sources. The originality lies in the integration of the chemical space of drug chemical structures and the biological space of drug target proteins in a unified framework. As a result, we demonstrate the usefulness of the proposed method on the simultaneous prediction of 969 side-effects for approved drugs from their chemical substructure and target protein profiles and show that the prediction accuracy consistently improves owing to the proposed regression model and integration of chemical and biological information. We also conduct a comprehensive side-effect prediction for uncharacterized drug molecules stored in DrugBank and confirm interesting predictions using independent information sources. The proposed method is expected to be useful at many stages of the drug development process

    Drug Side-Effect Prediction Based on the Integration of Chemical and Biological Spaces

    No full text
    Drug side-effects, or adverse drug reactions, have become a major public health concern and remain one of the main causes of drug failure and of drug withdrawal once they have reached the market. Therefore, the identification of potential severe side-effects is a challenging issue. In this paper, we develop a new method to predict potential side-effect profiles of drug candidate molecules based on their chemical structures and target protein information on a large scale. We propose several extensions of kernel regression model for multiple responses to deal with heterogeneous data sources. The originality lies in the integration of the chemical space of drug chemical structures and the biological space of drug target proteins in a unified framework. As a result, we demonstrate the usefulness of the proposed method on the simultaneous prediction of 969 side-effects for approved drugs from their chemical substructure and target protein profiles and show that the prediction accuracy consistently improves owing to the proposed regression model and integration of chemical and biological information. We also conduct a comprehensive side-effect prediction for uncharacterized drug molecules stored in DrugBank and confirm interesting predictions using independent information sources. The proposed method is expected to be useful at many stages of the drug development process

    Model fitting.

    No full text
    <p>Train (a) and test (b) log likelihood of the negative control data for the two proposed models, and the baseline, varying the number of phenotypic classes. Green corresponds to the copula based model, red corresponds to the gaussian model, and black corresponds to the baseline model. For training log likelihood, we picked the best model among 10 random restarts of the algorithm. For the test log likelihood, the boxes account for the variability among ten different splits of the data in a cross validation setting. Given a data split, for each fold and each number of classes, we picked the best model among 5 random restarts of the algorithm.</p

    Novelty detection and positive controls.

    No full text
    <p>Density plot of cell population descriptors averaged over wells (panel <b>(a)</b> to <b>(e)</b>) and log likelihood (panel <b>(f)</b>) given by the model trained on negative controls. Positive controls are very different from negative controls. It is easy to distinguish them from negative controls only looking at cell count. The log likelihood given by the model separates the two type of controls. We observe that the discriminative power of the univariate descriptors is not lost when considering the model likelihood.</p

    Example of a well.

    No full text
    <p><b>Panels</b> (<b>a</b>) <b>to</b> (<b>e</b>), the density plots represent the distribution of cell population descriptors averaged over wells for the negative control dataset. Red lines are the values of the 4 fields of the considered well and the blue lines are the population descriptors averaged over the 4 fields. <b>Panel</b> (<b>f</b>) represents the density of the log likelihood for all negative controls. The blue vertical line represents the log-likelihood of the considered well.</p

    Within population variability.

    No full text
    <p>Comparison of the dispersion of fields belonging to the same wells (boxplot A) and randomly selected fields (boxplot B). The measure of dispersion is the sum of squared pairwise distances. The population descriptors (cell count and proportions of cells in S, G2, M and apoptotic states) have been scaled beforehand.</p

    Association between population descriptors.

    No full text
    <p>Association between cell count and proportion of cells in different states based on negative controls. The measure of association is Spearman's rho and the p-value is computed via the asymptotic t approximation <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0042715#pone.0042715-Hollander1" target="_blank">[36]</a>.</p
    corecore