19 research outputs found

    Cross-Sectional Detection of Acute HIV Infection: Timing of Transmission, Inflammation and Antiretroviral Therapy

    Get PDF
    BACKGROUND: Acute HIV infection (AHI) is a critical phase of infection when irreparable damage to the immune system occurs and subjects are very infectious. We studied subjects with AHI prospectively to develop better treatment and public health interventions. METHODS: Cross-sectional screening was employed to detect HIV RNA positive, antibody negative subjects. Date of HIV acquisition was estimated from clinical history and correlated with sequence diversity assessed by single genome amplification (SGA). Twenty-two cytokines/chemokines were measured from enrollment through week 24. RESULTS: Thirty-seven AHI subjects were studied. In 7 participants with limited exposure windows, the median exposure to HIV occurred 14 days before symptom onset. Lack of viral sequence diversification confirmed the short duration of infection. Transmission dates estimated by SGA/sequencing using molecular clock models correlated with transmission dates estimated by symptom onset in individuals infected with single HIV variants (mean of 28 versus 33 days). Only 10 of 22 cytokines/chemokines were significantly elevated among AHI participants at enrollment compared to uninfected controls, and only 4 participants remained seronegative at enrollment. DISCUSSION: The results emphasize the difficulty in recruiting subjects early in AHI. Viral sequence diversity proved accurate in estimating time of infection. Regardless of aggressive screening, peak viremia and inflammation occurred before enrollment and potential intervention. Given the personal and public health importance, improved AHI detection is urgently needed

    E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription

    No full text
    Selective recognition of the E-box sequences on muscle gene promoters by heterodimers of myogenic basic helix–loop–helix (bHLH) transcription factors, such as MyoD, with the ubiquitous bHLH proteins E12 and E47 is a key event in skeletal myogenesis. However, homodimers of MyoD or E47 are unable of binding to and activating muscle chromatin targets, suggesting that formation of functional MyoD/E47 heterodimers is pivotal in controlling muscle transcription. Here we show that p38 MAPK, whose activity is essential for myogenesis, regulates MyoD/E47 heterodimerization. Phosphorylation of E47 at Ser140 by p38 induces MyoD/E47 association and activation of muscle-specific transcription, while the nonphosphorylatable E47 mutant Ser140Ala fails to heterodimerize with MyoD and displays impaired myogenic potential. Moreover, inhibition of p38 activity in myocytes precludes E47 phosphorylation at Ser140, which results in reduced MyoD/E47 heterodimerization and inefficient muscle differentiation, as a consequence of the impaired binding of the transcription factors to the E regulatory regions of muscle genes. These findings identify a novel pro-myogenic role of p38 in regulating the formation of functional MyoD/E47 heterodimers that are essential for myogenesis
    corecore