3,333 research outputs found

    Optimal measurement precision of a nonlinear interferometer

    Full text link
    We study the best attainable measurement precision when a double-well trap with bosons inside acts as an interferometer to measure the energy difference of the atoms on the two sides of the trap. We introduce time independent perturbation theory as the main tool in both analytical arguments and numerical computations. Nonlinearity from atom-atom interactions will not indirectly allow the interferometer to beat the Heisenberg limit, but in many regimes of the operation the Heisenberg limit scaling of measurement precision is preserved in spite of added tunneling of the atoms and atom-atom interactions, often even with the optimal prefactor.Comment: very close to published versio

    Self-Energy Correction to the Bound-Electron g Factor of P States

    Get PDF
    The radiative self-energy correction to the bound-electron g factor of 2P_1/2 and 2P_3/2 states in one-electron ions is evaluated to order alpha (Z alpha)^2. The contribution of high-energy virtual photons is treated by means of an effective Dirac equation, and the result is verified by an approach based on long-wavelength quantum electrodynamics. The contribution of low-energy virtual photons is calculated both in the velocity and in the length gauge and gauge invariance is verified explicitly. The results compare favorably to recently available numerical data for hydrogenlike systems with low nuclear charge numbers.Comment: 8 pages, RevTe

    Probing anisotropies of gravitational-wave backgroundswith a space-based interferometer II: Perturbative reconstruction of a low-frequency skymap

    Full text link
    We present a perturbative reconstruction method to make a skymap of gravitational-wave backgrounds (GWBs) observed via space-based interferometer. In the presence of anisotropies in GWBs, the cross-correlated signals of observed GWBs are inherently time-dependent due to the non-stationarity of the gravitational-wave detector. Since the cross-correlated signal is obtained through an all-sky integral of primary signals convolving with the antenna pattern function of gravitational-wave detectors, the non-stationarity of cross-correlated signals, together with full knowledge of antenna pattern functions, can be used to reconstruct an intensity map of the GWBs. Here, we give two simple methods to reconstruct a skymap of GWBs based on the perturbative expansion in low-frequency regime. The first one is based on harmonic-Fourier representation of data streams and the second is based on "direct" time-series data. The latter method enables us to create a skymap in a direct manner. The reconstruction technique is demonstrated in the case of the Galactic gravitational wave background observed via planned space interferometer, LISA. Although the angular resolution of low-frequency skymap is rather restricted, the methodology presented here would be helpful in discriminating the GWBs of galactic origins by those of the extragalactic and/or cosmological origins.Comment: 23 pages, 12 figures, Phys.Rev.D (2005) in pres

    Solving a "Hard" Problem to Approximate an "Easy" One: Heuristics for Maximum Matchings and Maximum Traveling Salesman Problems

    Get PDF
    We consider geometric instances of the Maximum Weighted Matching Problem (MWMP) and the Maximum Traveling Salesman Problem (MTSP) with up to 3,000,000 vertices. Making use of a geometric duality relationship between MWMP, MTSP, and the Fermat-Weber-Problem (FWP), we develop a heuristic approach that yields in near-linear time solutions as well as upper bounds. Using various computational tools, we get solutions within considerably less than 1% of the optimum. An interesting feature of our approach is that, even though an FWP is hard to compute in theory and Edmonds' algorithm for maximum weighted matching yields a polynomial solution for the MWMP, the practical behavior is just the opposite, and we can solve the FWP with high accuracy in order to find a good heuristic solution for the MWMP.Comment: 20 pages, 14 figures, Latex, to appear in Journal of Experimental Algorithms, 200

    Spin-dependent phenomena and device concepts explored in (Ga,Mn)As

    Full text link
    Over the past two decades, the research of (Ga,Mn)As has led to a deeper understanding of relativistic spin-dependent phenomena in magnetic systems. It has also led to discoveries of new effects and demonstrations of unprecedented functionalities of experimental spintronic devices with general applicability to a wide range of materials. In this article we review the basic material properties that make (Ga,Mn)As a favorable test-bed system for spintronics research and discuss contributions of (Ga,Mn)As studies in the general context of the spin-dependent phenomena and device concepts. Special focus is on the spin-orbit coupling induced effects and the reviewed topics include the interaction of spin with electrical current, light, and heat.Comment: 47 pages, 41 figure

    An analysis of the far-field response to external forcing of a suspension in Stokes flow in a parallel-wall channel

    Full text link
    The leading-order far-field scattered flow produced by a particle in a parallel-wall channel under creeping flow conditions has a form of the parabolic velocity field driven by a 2D dipolar pressure distribution. We show that in a system of hydrodynamically interacting particles, the pressure dipoles contribute to the macroscopic suspension flow in a similar way as the induced electric dipoles contribute to the electrostatic displacement field. Using this result we derive macroscopic equations governing suspension transport under the action of a lateral force, a lateral torque or a macroscopic pressure gradient in the channel. The matrix of linear transport coefficients in the constitutive relations linking the external forcing to the particle and fluid fluxes satisfies the Onsager reciprocal relation. The transport coefficients are evaluated for square and hexagonal periodic arrays of fixed and freely suspended particles, and a simple approximation in a Clausius-Mossotti form is proposed for the channel permeability coefficient. We also find explicit expressions for evaluating the periodic Green's functions for Stokes flow between two parallel walls.Comment: 23 pages, 12 figure

    Electronic and magnetic properties of GaMnAs: Annealing effects

    Full text link
    The effect of short-time and long-time annealing at 250C on the conductivity, hole density, and Curie temperature of GaMnAs single layers and GaMnAs/InGaMnAs heterostructures is studied by in-situ conductivity measurements as well as Raman and SQUID measurements before and after annealing. Whereas the conductivity monotonously increases with increasing annealing time, the hole density and the Curie temperature show a saturation after annealing for 30 minutes. The incorporation of thin InGaMnAs layers drastically enhances the Curie temperature of the GaMnAs layers.Comment: 4 pages, 6 figures, submitted to Physica

    Control of Coercivities in (Ga,Mn)As Thin Films by Small Concentrations of MnAs Nanoclusters

    Full text link
    We demonstrate that low concentrations of a secondary magnetic phase in (Ga,Mn)As thin films can enhance the coercivity by factors up to ~100 without significantly degrading the Curie temperature or saturation magnetisation. Magnetic measurements indicate that the secondary phase consists of MnAs nanoclusters, of average size ~7nm. This approach to controlling the coercivity while maintaining high Curie temperature, may be important for realizing ferromagnetic semiconductor based devices.Comment: 8 pages,4 figures. accepted for publication in Appl. Phys. Let
    • …
    corecore