125 research outputs found

    Electrostatic Modulation of the Electronic Properties of Dirac Semimetal Na3Bi

    Full text link
    Large-area thin films of topological Dirac semimetal Na3_3Bi are grown on amorphous SiO2_2:Si substrates to realise a field-effect transistor with the doped Si acting as back gate. As-grown films show charge carrier mobilities exceeding 7,000 cm2^2/Vs and carrier densities below 3 ×\times 1018^{18} cm−3^{-3}, comparable to the best thin-film Na3_3Bi. An ambipolar field effect and minimum conductivity are observed, characteristic of Dirac electronic systems. The results are quantitatively understood within a model of disorder-induced charge inhomogeneity in topological Dirac semimetals. Due to the inverted band structure, the hole mobility is significantly larger than the electron mobility in Na3_3Bi, and when present, these holes dominate the transport properties.Comment: 5 pages, 4 figures; minor corrections and revisions for readabilit

    Low temperature transport on surface conducting diamond

    Full text link
    Magneto-transport measurements were performed on surface conducting hydrogen-terminated diamond (100) hall bars at temperatures between 0.1-5 K in magnetic fields up to 8T.Comment: 2 pages Optoelectronic and Microelectronic Materials & Devices (COMMAD), 2012 Conferenc

    A New Test of the Einstein Equivalence Principle and the Isotropy of Space

    Get PDF
    Recent research has established that nonsymmetric gravitation theories like Moffat's NGT predict that a gravitational field singles out an orthogonal pair of polarization states of light that propagate with different phase velocities. We show that a much wider class of nonmetric theories encompassed by the χg\chi g formalism predict such violations of the Einstein equivalence principle. This gravity-induced birefringence of space implies that propagation through a gravitational field can alter the polarization of light. We use data from polarization measurements of extragalactic sources to constrain birefringence induced by the field of the Galaxy. Our new constraint is 10810^8 times sharper than previous ones.Comment: 21 pages, Latex, 3 Postscript figure

    Defects, band bending and ionization rings in MoS2

    Full text link
    Chalcogen vacancies in transition metal dichalcogenides are widely acknowledged as both donor dopants and as a source of disorder. The electronic structure of sulphur vacancies in MoS2 however is still controversial, with discrepancies in the literature pertaining to the origin of the in-gap features observed via scanning tunneling spectroscopy (STS) on single sulphur vacancies. Here we use a combination of scanning tunnelling microscopy (STM) and STS to study embedded sulphur vacancies in bulk MoS2 crystals. We observe spectroscopic features dispersing in real space and in energy, which we interpret as tip position- and bias-dependent ionization of the sulphur vacancy donor due to tip induced band bending (TIBB). The observations indicate that care must be taken in interpreting defect spectra as reflecting in-gap density of states, and may explain discrepancies in the literature.Comment: 7 pages, 5 figure

    Electric Field-Tuned Topological Phase Transition in Ultra-Thin Na3Bi - Towards a Topological Transistor

    Full text link
    The electric field induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor [1-4]. In this scheme an electric field can switch 'on' the ballistic flow of charge and spin along dissipationless edges of the two-dimensional (2D) quantum spin Hall insulator [5-9], and when 'off' is a conventional insulator with no conductive channels. Such as topological transistor is promising for low-energy logic circuits [4], which would necessitate electric field-switched materials with conventional and topological bandgaps much greater than room temperature, significantly greater than proposed to date [6-8]. Topological Dirac semimetals(TDS) are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases [3,10-16]. Here we use scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES) to show that mono- and bilayer films of TDS Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the absence of electric field. Upon application of electric field by doping with potassium or by close approach of the STM tip, the bandgap can be completely closed then re-opened with conventional gap greater than 100 meV. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy kT = 25 meV at room temperature, suggest that ultrathin Na3Bi is suitable for room temperature topological transistor operation

    Visualization of Strain-Induced Landau Levels in a Graphene - Black Phosphorus Heterostructure

    Full text link
    Strain-induced pseudo magnetic fields offer the possibility of realizing zero magnetic field Quantum Hall effect in graphene, possibly up to room temperature, representing a promising avenue for lossless charge transport applications. Strain engineering on graphene has been achieved via random nanobubbles or artificial nanostructures on the substrate, but the highly localized and non-uniform pseudomagnetic fields can make spectroscopic probes of electronic structure difficult. Heterostructure engineering offers an alternative approach: By stacking graphene on top of another van der Waals material with large lattice mismatch at a desired twist angle, it is possible to generate large strain-induced pseudo magnetic fields uniformly over the entire heterostructure. Here, we report using nano-angle resolved photoemission spectroscopy (nano-ARPES) to probe the electronic bandstructure of a graphene/black phosphorus heterostructure (G/BP). By directly measuring the iso-energy contours of graphene and black phosphorus we determine a twist angle of 20-degrees in our heterostructure. High-resolution nano-ARPES of the graphene bands near the Fermi level reveals the emergence of flat bands located within the Dirac cone. The spacing of the flat bands is consistent with Landau level formation in graphene, and corresponds to a pseudo-field of 11.36 T. Our work provides a new way to study quantum Hall phases induced by strain in 2D materials and heterostructures

    Crossover from 2D ferromagnetic insulator to wide bandgap quantum anomalous Hall insulator in ultra-thin MnBi2Te4

    Full text link
    Intrinsic magnetic topological insulators offer low disorder and large magnetic bandgaps for robust magnetic topological phases operating at higher temperatures. By controlling the layer thickness, emergent phenomena such as the Quantum Anomalous Hall (QAH) effect and axion insulator phases have been realised. These observations occur at temperatures significantly lower than the Neel temperature of bulk MnBi2Te4, and measurement of the magnetic energy gap at the Dirac point in ultra-thin MnBi2Te4 has yet to be achieved. Critical to achieving the promise of this system is a direct measurement of the layer-dependent energy gap and verifying whether the gap is magnetic in the QAH phase. Here we utilise temperature dependent angle-resolved photoemission spectroscopy to study epitaxial ultra-thin MnBi2Te4. We directly observe a layer dependent crossover from a 2D ferromagnetic insulator with a bandgap greater than 780 meV in one septuple layer (1 SL) to a QAH insulator with a large energy gap (>100 meV) at 8 K in 3 and 5 SL MnBi2Te4. The QAH gap is confirmed to be magnetic in origin, as it abruptly diminishes with increasing temperature above 8 K. The direct observation of a large magnetic energy gap in the QAH phase of few-SL MnBi2Te4 is promising for further increasing the operating temperature of QAH materials

    Delivering the world’s most intense muon beam

    Get PDF
    A new muon beam line, the muon science innovative channel, was set up at the Research Center for Nuclear Physics, Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid, the first 36° of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beam line. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively charged muons, the x-ray spectrum yielded by muonic atoms in the target was measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded (10.4±2.7)×10^{5}  muons per watt of proton beam power (μ^{+} and μ^{-}), far in excess of other facilities. At full beam power (400 W), this implies a rate of muons of (4.2±1.1)×10^{8}  muons s^{−1}, among the highest in the world. The number of μ^{-} measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The setup is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research
    • …
    corecore