35 research outputs found

    Risk factors for breast cancer characterized by the estrogen receptor alpha A908G (K303R) mutation

    Get PDF
    Abstract Introduction Estrogen is important in the development of breast cancer, and its biological effects are mediated primarily through the two estrogen receptors alpha and beta. A point mutation in the estrogen receptor alpha gene, ESR1, referred to as A908G or K303R, was originally identified in breast hyperplasias and was reported to be hypersensitive to estrogen. We recently detected this mutation at a low frequency of 6% in invasive breast tumors of the Carolina Breast Cancer Study (CBCS). Methods In this report, we evaluated risk factors for invasive breast cancer classified according to the presence or absence of the ESR1 A908G mutation in the CBCS, a population-based case-control study of breast cancer among younger and older white and African-American women in North Carolina. Of the 653 breast tumors evaluated, 37 were ESR1 A908G mutation-positive and 616 were mutation-negative. Results ESR1 A908G mutation-positive breast cancer was significantly associated with a first-degree family history of breast cancer (odds ratio [OR] = 2.69, 95% confidence interval [CI] = 1.15 to 6.28), whereas mutation-negative breast cancer was not. Comparison of the two case subgroups supported this finding (OR = 2.65, 95% CI = 1.15 to 6.09). There was also the suggestion that longer duration of oral contraceptive (OC) use (OR = 3.73, 95% CI = 1.16 to 12.03; P trend = 0.02 for use of more than 10 years) and recent use of OCs (OR = 3.63, 95% CI = 0.80 to 16.45; P trend = 0.10 for use within 10 years) were associated with ESR1 A908G mutation-positive breast cancer; however, ORs for comparison of the two case subgroups were not statistically significant. Hormone replacement therapy use was inversely correlated with mutation-negative breast cancer, but the effect on mutation-positive cancer was unclear due to the small number of postmenopausal cases whose tumors carried the mutation. Mutation-negative breast cancer was associated with several reproductive factors, including younger age at menarche (OR = 1.46, 95% CI = 1.09 to 1.94) and greater total estimated years of ovarian function (OR = 1.82, 95% CI = 1.21 to 2.74). Conclusion These preliminary results suggest that OCs may interact with the ESR1 A908G mutant receptor to drive the development of some breast tumors

    DNA methylation profiling in the Carolina Breast Cancer Study defines cancer subclasses differing in clinicopathologic characteristics and survival

    Get PDF
    Abstract Introduction Breast cancer is a heterogeneous disease, with several intrinsic subtypes differing by hormone receptor (HR) status, molecular profiles, and prognosis. However, the role of DNA methylation in breast cancer development and progression and its relationship with the intrinsic tumor subtypes are not fully understood. Methods A microarray targeting promoters of cancer-related genes was used to evaluate DNA methylation at 935 CpG sites in 517 breast tumors from the Carolina Breast Cancer Study, a population-based study of invasive breast cancer. Results Consensus clustering using methylation (β) values for the 167 most variant CpG loci defined four clusters differing most distinctly in HR status, intrinsic subtype (luminal versus basal-like), and p53 mutation status. Supervised analyses for HR status, subtype, and p53 status identified 266 differentially methylated CpG loci with considerable overlap. Genes relatively hypermethylated in HR+, luminal A, or p53 wild-type breast cancers included FABP3, FGF2, FZD9, GAS7, HDAC9, HOXA11, MME, PAX6, POMC, PTGS2, RASSF1, RBP1, and SCGB3A1, whereas those more highly methylated in HR-, basal-like, or p53 mutant tumors included BCR, C4B, DAB2IP, MEST, RARA, SEPT5, TFF1, THY1, and SERPINA5. Clustering also defined a hypermethylated luminal-enriched tumor cluster 3 that gene ontology analysis revealed to be enriched for homeobox and other developmental genes (ASCL2, DLK1, EYA4, GAS7, HOXA5, HOXA9, HOXB13, IHH, IPF1, ISL1, PAX6, TBX1, SOX1, and SOX17). Although basal-enriched cluster 2 showed worse short-term survival, the luminal-enriched cluster 3 showed worse long-term survival but was not independently prognostic in multivariate Cox proportional hazard analysis, likely due to the mostly early stage cases in this dataset. Conclusions This study demonstrates that epigenetic patterns are strongly associated with HR status, subtype, and p53 mutation status and may show heterogeneity within tumor subclass. Among HR+ breast tumors, a subset exhibiting a gene signature characterized by hypermethylation of developmental genes and poorer clinicopathologic features may have prognostic value and requires further study. Genes differentially methylated between clinically important tumor subsets have roles in differentiation, development, and tumor growth and may be critical to establishing and maintaining tumor phenotypes and clinical outcomes

    FAK overexpression and p53 mutations are highly correlated in human breast cancer

    Get PDF
    Focal Adhesion Kinase (FAK) is overexpressed in a number of tumors, including breast cancer. Another marker of breast cancer tumorigenesis is the tumor suppressor gene p53 that is frequently mutated in breast cancer. In the present study, our aim was to find a correlation between FAK overexpression, p53 expression and mutation status in a population-based series of invasive breast cancer tumors from the Carolina Breast Cancer Study. Immunohistochemical analyses of 622 breast cancer tumors revealed that expression of FAK and p53 were highly correlated (P = 0.0002) and FAK positive tumors were 1.8 times more likely to be p53 positive compared to FAK negative tumors [odds ratio (OR) = 1.8; 95% Confidence Interval (CI) 1.2 – 2.8, adjusted for age, race and stage at diagnosis]. Tumors positive for p53 expression showed higher intensity of FAK staining (P<0.0001) and higher percent of FAK positive staining (P<0.0005). From the same study, we evaluated 596 breast tumors for mutations in the p53 gene, using SSCP (single strand conformational polymorphism) and sequencing. Statistical analyses were performed to determine the correlation between p53 mutation status and FAK expression in these tumors. We found that FAK expression and p53 mutation were positively correlated (P<0.0001) and FAK positive tumors were 2.5 times more likely to be p53 mutation positive compared to FAK negative tumors [adjusted OR = 2.5, 95% CI 1.6–3.9]. This is the first analysis demonstrating a high correlation between FAK expression and p53 mutations in a population-based series of breast tumors

    The estrogen receptor-α A908G (K303R) mutation occurs at a low frequency in invasive breast tumors: results from a population-based study

    Get PDF
    INTRODUCTION: Evidence suggests that alterations in estrogen signaling pathways, including estrogen receptor-α (ER-α), occur during breast cancer development. A point mutation in ER-α (nucleotide A908G), producing an amino acid change from lysine to arginine at codon 303 (K303R) results in receptor hypersensitivity to estrogen. This mutation was initially reported in one-third of hyperplastic benign breast lesions, although several recent studies failed to detect it in benign or malignant breast tissues. METHODS: We screened 653 microdissected, newly diagnosed invasive breast tumors from patients in the Carolina Breast Cancer Study, a population-based case-control study of breast cancer in African American and white women in North Carolina, for the presence of the ER-α A908G mutation by using single-strand conformational polymorphism (SSCP) analysis and (33)P-cycle sequencing. RESULTS: We detected the ER-α A908G mutation in 37 of 653 (5.7%) breast tumors. The absence of this mutation in germline DNA confirmed it to be somatic. Three tumors exhibited only the mutant G base at nucleotide 908 on sequencing, indicating that the wild-type ER-α allele had been lost. The ER-α A908G mutation was found more frequently in higher-grade breast tumors (odds ratio (OR) 2.83; 95% confidence interval (CI) 1.09 to 7.34, grade II compared with grade I), and in mixed lobular/ductal tumors (OR 2.10; 95% CI 0.86 to 5.12) compared with ductal carcinomas, although the latter finding was not statistically significant. CONCLUSION: This population-based study, the largest so far to screen for the ER-α A908G mutation in breast cancer, confirms the presence of the mutant in invasive breast tumors. The mutation was associated with higher tumor grade and mixed lobular/ductal breast tumor histology

    Race, Breast Cancer Subtypes, and Survival in the Carolina Breast Cancer Study

    Get PDF
    Context: Gene expression analysis has identified several breast cancer subtypes, including basal-like, human epidermal growth factor receptor-2 positive/estrogen receptor negative (HER2+/ER–), luminal A, and luminal B. Objectives: To determine population-based distributions and clinical associations for breast cancer subtypes. Design, Setting, and Participants: Immunohistochemical surrogates for each subtype were applied to 496 incident cases of invasive breast cancer from the Carolina Breast Cancer Study (ascertained between May 1993 and December 1996), a population based, case-control study that oversampled premenopausal and African American women. Subtype definitions were as follows: luminal A (ER+ and/or progesterone receptor positive [PR+], HER2−), luminal B (ER+ and/or PR+, HER2+), basal-like (ER−, PR−, HER2−, cytokeratin 5/6 positive, and/or HER1+), HER2+/ER− (ER−, PR−, and HER2+), and unclassified (negative for all 5 markers). Main Outcome Measures: We examined the prevalence of breast cancer subtypes within racial and menopausal subsets and determined their associations with tumor size, axillary nodal status, mitotic index, nuclear pleomorphism, combined grade, p53 mutation status, and breast cancer–specific survival. Results The basal-like breast cancer subtype was more prevalent among premenopausal African American women (39%) compared with postmenopausal African American women (14%) and non–African American women (16%) of any age (P<.001), whereas the luminal A subtype was less prevalent (36% vs 59% and 54%, respectively). The HER2+/ER− subtype did not vary with race or menopausal status (6%-9%). Compared with luminal A, basal-like tumors had more TP53 mutations (44% vs 15%, P<.001), higher mitotic index (odds ratio [OR], 11.0; 95% confidence interval [CI], 5.6-21.7), more marked nuclear pleomorphism (OR, 9.7; 95% CI, 5.3-18.0), and higher combined grade (OR, 8.3; 95% CI, 4.4-15.6). Breast cancer–specific survival differed by subtype (P<.001), with shortest survival among HER2+/ER− and basal-like subtypes. Conclusions: Basal-like breast tumors occurred at a higher prevalence among premenopausal African American patients compared with postmenopausal African American and non–African American patients in this population-based study. A higher prevalence of basal-like breast tumors and a lower prevalence of luminal A tumors could contribute to the poor prognosis of young African American women with breast cancer

    Inherited Genetic Variants Associated with Occurrence of Multiple Primary Melanoma

    Get PDF
    Recent studies including genome-wide association studies have identified several putative low-penetrance susceptibility loci for melanoma. We sought to determine their generalizability to genetic predisposition for multiple primary melanoma in the international population-based Genes, Environment, and Melanoma (GEM) Study. GEM is a case-control study of 1,206 incident cases of multiple primary melanoma and 2,469 incident first primary melanoma participants as the control group. We investigated the odds of developing multiple primary melanoma for 47 single nucleotide polymorphisms (SNP) from 21 distinct genetic regions previously reported to be associated with melanoma. ORs and 95% CIs were determined using logistic regression models adjusted for baseline features (age, sex, age by sex interaction, and study center). We investigated univariable models and built multivariable models to assess independent effects of SNPs. Eleven SNPs in 6 gene neighborhoods (TERT/CLPTM1L, TYRP1, MTAP, TYR, NCOA6, and MX2) and a PARP1 haplotype were associated with multiple primary melanoma. In a multivariable model that included only the most statistically significant findings from univariable modeling and adjusted for pigmentary phenotype, back nevi, and baseline features, we found TERT/CLPTM1L rs401681 (P = 0.004), TYRP1 rs2733832 (P = 0.006), MTAP rs1335510 (P = 0.0005), TYR rs10830253 (P = 0.003), and MX2 rs45430 (P = 0.008) to be significantly associated with multiple primary melanoma while NCOA6 rs4911442 approached significance (P = 0.06). The GEM study provides additional evidence for the relevance of these genetic regions to melanoma risk and estimates the magnitude of the observed genetic effect on development of subsequent primary melanoma
    corecore