4 research outputs found
Recommended from our members
Race, Gene Expression Signatures, and Clinical Outcomes of Patients with High-Risk Early Breast Cancer
Importance: There has been little consideration of genomic risk of recurrence by breast cancer subtype despite evidence of racial disparities in breast cancer outcomes.Objective: To evaluate associations between clinical trial end points, namely pathologic complete response (pCR) and distant recurrence-free survival (DRFS), and race and examine whether gene expression signatures are associated with outcomes by race.Design, Setting, and Participants: This retrospective cohort study used data from the Investigation of Serial Studies to Predict Your Therapeutic Response With Imaging and Molecular Analysis 2 (I-SPY 2) multicenter clinical trial of neoadjuvant chemotherapy with novel agents and combinations for patients with previously untreated stage II/III breast cancer. Analyses were conducted of associations between race and short- and long-term outcomes, overall and by receptor subtypes, and their association with 28 expression biomarkers. The trial enrolled 990 female patients between March 30, 2010, and November 5, 2016, with a primary tumor size of 2.5 cm or greater and clinical or molecular high risk based on MammaPrint or hormone receptor (HR)-negative/ERBB2 (formerly HER2 or HER2/neu)-positive subtyping across 9 arms. This data analysis was performed between June 10, 2021, and October 20, 2022. Exposure: Race, tumor receptor subtypes, and genomic biomarker expression of early breast cancer.Main Outcomes and Measures: The primary outcomes were pCR and DRFS assessed by race, overall, and by tumor subtype using logistic regression and Cox proportional hazards regression models. The interaction between 28 expression biomarkers and race, considering pCR and DRFS overall and within subtypes, was also evaluated.Results: The analytic sample included 974 participants (excluding 16 self-reporting as American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, or multiple races due to small sample sizes), including 68 Asian (7%), 120 Black (12%), and 786 White (81%) patients. Median (range) age at diagnosis was 47 (25-71) years for Asian, 49 (25-77) for Black, and 49 (23-73) years for White patients. The pCR rates were 32% (n = 22) for Asian, 30% for Black (n = 36), and 32% for White (n = 255) patients (P =.87). Black patients with HR-positive/ERBB2-negative tumors not achieving pCR had significantly worse DRFS than their White counterparts (hazard ratio, 2.28; 95% CI, 1.24-4.21; P =.01), with 5-year DRFS rates of 55% (n = 32) and 77% (n = 247), respectively. Black patients with HR-positive/ERBB2-negative tumors, compared with White patients, had higher expression of an interferon signature (mean [SD], 0.39 [0.87] and -0.10 [0.99]; P =.007) and, compared with Asian patients, had a higher mitotic score (mean [SD], 0.07 [1.08] and -0.69 [1.06]; P =.01) and lower estrogen receptor/progesterone receptor signature (mean [SD], 0.31 [0.90] and 1.08 [0.95]; P =.008). A transforming growth factor β signature had a significant association with race relative to pCR and DRFS, with a higher signature associated with lower pCR and worse DRFS outcomes among Black patients only.Conclusions and Relevance: The findings show that women with early high-risk breast cancer who achieve pCR have similarly good outcomes regardless of race, but Black women with HR-positive/ERBB2-negative tumors without pCR may have worse DRFS than White women, highlighting the need to develop and test novel biomarker-informed therapies in diverse populations.</p
Recommended from our members
Safety and efficacy of HSP90 inhibitor ganetespib for neoadjuvant treatment of stage II/III breast cancer.
HSP90 inhibitors destabilize oncoproteins associated with cell cycle, angiogenesis, RAS-MAPK activity, histone modification, kinases and growth factors. We evaluated the HSP90-inhibitor ganetespib in combination with standard chemotherapy in patients with high-risk early-stage breast cancer. I-SPY2 is a multicenter, phase II adaptively randomized neoadjuvant (NAC) clinical trial enrolling patients with stage II-III breast cancer with tumors 2.5 cm or larger on the basis of hormone receptors (HR), HER2 and Mammaprint status. Multiple novel investigational agents plus standard chemotherapy are evaluated in parallel for the primary endpoint of pathologic complete response (pCR). Patients with HER2-negative breast cancer were eligible for randomization to ganetespib from October 2014 to October 2015. Of 233 women included in the final analysis, 140 were randomized to the standard NAC control; 93 were randomized to receive 150 mg/m2 ganetespib every 3 weeks with weekly paclitaxel over 12 weeks, followed by AC. Arms were balanced for hormone receptor status (51-52% HR-positive). Ganetespib did not graduate in any of the biomarker signatures studied before reaching maximum enrollment. Final estimated pCR rates were 26% vs. 18% HER2-negative, 38% vs. 22% HR-negative/HER2-negative, and 15% vs. 14% HR-positive/HER2-negative for ganetespib vs control, respectively. The predicted probability of success in phase 3 testing was 47% HER2-negative, 72% HR-negative/HER2-negative, and 19% HR-positive/HER2-negative. Ganetespib added to standard therapy is unlikely to yield substantially higher pCR rates in HER2-negative breast cancer compared to standard NAC, and neither HSP90 pathway nor replicative stress expression markers predicted response. HSP90 inhibitors remain of limited clinical interest in breast cancer, potentially in other clinical settings such as HER2-positive disease or in combination with anti-PD1 neoadjuvant chemotherapy in triple negative breast cancer.Trial registration: www.clinicaltrials.gov/ct2/show/NCT01042379
Safety and efficacy of HSP90 inhibitor ganetespib for neoadjuvant treatment of stage II/III breast cancer.
HSP90 inhibitors destabilize oncoproteins associated with cell cycle, angiogenesis, RAS-MAPK activity, histone modification, kinases and growth factors. We evaluated the HSP90-inhibitor ganetespib in combination with standard chemotherapy in patients with high-risk early-stage breast cancer. I-SPY2 is a multicenter, phase II adaptively randomized neoadjuvant (NAC) clinical trial enrolling patients with stage II-III breast cancer with tumors 2.5 cm or larger on the basis of hormone receptors (HR), HER2 and Mammaprint status. Multiple novel investigational agents plus standard chemotherapy are evaluated in parallel for the primary endpoint of pathologic complete response (pCR). Patients with HER2-negative breast cancer were eligible for randomization to ganetespib from October 2014 to October 2015. Of 233 women included in the final analysis, 140 were randomized to the standard NAC control; 93 were randomized to receive 150 mg/m2 ganetespib every 3 weeks with weekly paclitaxel over 12 weeks, followed by AC. Arms were balanced for hormone receptor status (51-52% HR-positive). Ganetespib did not graduate in any of the biomarker signatures studied before reaching maximum enrollment. Final estimated pCR rates were 26% vs. 18% HER2-negative, 38% vs. 22% HR-negative/HER2-negative, and 15% vs. 14% HR-positive/HER2-negative for ganetespib vs control, respectively. The predicted probability of success in phase 3 testing was 47% HER2-negative, 72% HR-negative/HER2-negative, and 19% HR-positive/HER2-negative. Ganetespib added to standard therapy is unlikely to yield substantially higher pCR rates in HER2-negative breast cancer compared to standard NAC, and neither HSP90 pathway nor replicative stress expression markers predicted response. HSP90 inhibitors remain of limited clinical interest in breast cancer, potentially in other clinical settings such as HER2-positive disease or in combination with anti-PD1 neoadjuvant chemotherapy in triple negative breast cancer.Trial registration: www.clinicaltrials.gov/ct2/show/NCT01042379
Recommended from our members
Ganitumab and metformin plus standard neoadjuvant therapy in stage 2/3 breast cancer.
I-SPY2 is an adaptively randomized phase 2 clinical trial evaluating novel agents in combination with standard-of-care paclitaxel followed by doxorubicin and cyclophosphamide in the neoadjuvant treatment of breast cancer. Ganitumab is a monoclonal antibody designed to bind and inhibit function of the type I insulin-like growth factor receptor (IGF-1R). Ganitumab was tested in combination with metformin and paclitaxel (PGM) followed by AC compared to standard-of-care alone. While pathologic complete response (pCR) rates were numerically higher in the PGM treatment arm for hormone receptor-negative, HER2-negative breast cancer (32% versus 21%), this small increase did not meet I-SPY\u27s prespecified threshold for graduation. PGM was associated with increased hyperglycemia and elevated hemoglobin A1c (HbA1c), despite the use of metformin in combination with ganitumab. We evaluated several putative predictive biomarkers of ganitumab response (e.g., IGF-1 ligand score, IGF-1R signature, IGFBP5 expression, baseline HbA1c). None were specific predictors of response to PGM, although several signatures were associated with pCR in both arms. Any further development of anti-IGF-1R therapy will require better control of anti-IGF-1R drug-induced hyperglycemia and the development of more predictive biomarkers