5 research outputs found

    Investigation of Aurora kinases A and B in KRAS-induced lung tumorigenesis

    No full text
    O câncer de pulmão é a principal causa de morte relacionada ao câncer no mundo. Mutações em KRAS são altamente prevalentes no câncer e têm sido diretamente associadas ao processo tumorigênico. Apesar disso, até hoje todas as terapias visando inibir KRAS diretamente falharam e a caracterização de alvos indiretos, importantes para a oncogênese mediada por KRAS, é fundamental para o desenvolvimento de novas terapias contra o câncer de pulmão. Nós mostramos previamente que as quinases Aurora A (AURKA) e B (AURKB) são alvos a jusante de KRAS, importantes para o crescimento, viabilidade e oncogenicidade de linhagens celulares derivadas de tumores pulmonares mediados por KRAS. Aqui, nós aprofundamos os nossos estudos para melhor caracterizar AURKA e AURKB como potenciais alvos terapêuticos no câncer de pulmão. Os objetivos deste trabalho foram (1) investigar o mecanismo de perda de viabilidade induzido pela inibição de AURKA e/ou AURKB; (2) avaliar como a inibição de AURKA e/ou AURKB afeta propriedades oncogênicas relacionadas à agressividade tumoral; e (3) como a inibição destas quinases afeta o crescimento tumoral in vivo. Para tanto, nós utilizamos dois modelos celulares: (1) células A549 e H358, que apresentam mutações em KRAS, geneticamente modificadas para a expressão estável e induzível de shRNAs contra AURKA ou AURKB, e (2) células tumorais H1703, que não apresentam mutações em KRAS, geneticamente modificadas para a expressão induzível de KRASG12V, tratadas ou não com inibidores farmacológicos das quinases Aurora. A inibição farmacológica ou por interferência de RNA de AURKA e/ou AURKB em células H358 e A549 reduziu a proliferação celular, sendo esta inibição acompanhada de anomalias mitóticas, além de aneuploidia e poliploidia. A inibição destas quinases também induziu morte celular in vitro, tanto em mitose, quanto em interfase. Mais interessantemente, a inibição farmacológica dual de AURKA e AURKB induziu morte celular in vitro em células H1703, somente na presença de KRASG12V, indicando que a inibição das quinases Aurora afeta preferencialmente células portadoras de mutações em KRAS. Além disso, a inibição de AURKA e/ou AURKB reduziu propriedades malignas celulares relacionadas à agressividade tumoral, como migração, invasão e adesão. Finalmente, a inibição de AURKA por RNA de interferência em células A549 também reduziu a formação de tumores in vivo. Entretanto, como a inibição destas quinases levou a anomalias mitóticas e à instabilidade genética, nós resolvemos investigar se a inibição de TPX2, um substrato e ativador de AURKA, poderia ser uma abordagem alternativa para inibir esta via em câncer de pulmão induzido por KRAS. Primeiramente, nós observamos nos nossos modelos celulares que KRAS regula positivamente a expressão de TPX2. Além disso, a inibição de TPX2 em células pulmonares portadoras de KRAS oncogênica reduziu a viabilidade e proliferação celulares e induziu morte celular. Mais interessantemente, esses efeitos ocorreram preferencialmente em células que expressam KRAS oncogênica. Em conclusão, nossos resultados apoiam a hipótese de que a ativação de AURKA/TPX2 e AURKB por KRAS são eventos importantes no câncer de pulmão e sugerem a inibição destas vias, possivelmente em combinação com outras terapias citotóxicas, como uma nova abordagem terapêutica para o câncer de pulmão induzido por KRAS.Lung cancer is the leading cause of cancer-related deaths worldwide. KRAS mutations are widespread in lung cancer and have been causally linked to tumorigenesis. Nonetheless, therapies targeting KRAS directly have so far failed and characterization of indirect KRAS targets, which play important roles in KRAS-mediated oncogenesis, is crucial for the development of new therapies for lung cancer. We have previously shown that mitotic kinases Aurora A (AURKA) and B (AURKB) are downstream targets of oncogenic KRAS, important for the growth, viability, and oncogenicity of KRAS-transformed lung cancer cell lines. Here, we studied these kinases more in depth in order to better characterize them as potential therapeutical targets for KRAS-induced lung cancer. The aims of this study were (1) to investigate the mechanism leading to loss of viability upon AURKA and/or AURKB targeting; (2) to evaluate how AURKA and/or AURKB inhibition affects malignant properties associated with tumor aggressiveness; and (3) to determine whether AURKA and/or AURKB inhibition reduces KRAS-induced tumor growth in vivo. For that purpose, we used two cell-based models: (1) KRAS mutant A549 and H358 cells with stable and inducible shRNA-mediated knockdown of AURKA or AURKB, and (2) KRAS wildtype H1703 tumor cell lines, genetically engineered to inducibly express oncogenic KRASG12V treated or not with Aurora kinase pharmacological inhibitors. Targeting AURKA and/or AURKB pharmacologically or by RNA interference in H358 and A549 cells led to decreased cell proliferation, which was accompanied by mitotic abnormalities, leading to aneuploidy and hyperploidy. Aurora kinase targeting also induced cell death in vitro, both during mitosis and interphase. More importantly, AURKA and AURKB inhibition with a dual pharmacological inhibitor in H1703 cells induced cell death in vitro, but only in the presence of KRASG12V, indicating that Aurora kinase targeting affects preferentially lung cells harboring oncogenic KRAS. Furthermore, AURKA and/or AURKB targeting reduced malignant properties associated with tumor aggressiveness, such as cell migration, invasion and adhesion. Finally, AURKA targeting by RNA interference in A549 cells also reduced growth of xenograft tumors in vivo. Nonetheless, since Aurora targeting was associated with mitotic abnormalities and genetic instability, we decided to investigate if targeting TPX2, a substrate and an activator of AURKA, could constitute an alternative approach to targeting this pathway in KRAS-induced lung cancer. First, using our cell-based models, we determined that KRAS positively regulates TPX2 expression. In addition, TPX2 inhibition by RNA interference in KRAS-positive lung cells reduced cell viability and proliferation and induced cell death. Finally, these effects occurred preferentially in cells harboring oncogenic KRAS. In conclusion, our results support the hypothesis that activation of AURKA/TPX2 and AURKB by KRAS are important events in lung cancer and suggest inhibition of these pathways, possibly in combination with other cytotoxic therapies, as a new approach for KRAS-induced lung cancer therapy

    Investigation of Aurora kinases A and B in KRAS-induced lung tumorigenesis

    No full text
    O câncer de pulmão é a principal causa de morte relacionada ao câncer no mundo. Mutações em KRAS são altamente prevalentes no câncer e têm sido diretamente associadas ao processo tumorigênico. Apesar disso, até hoje todas as terapias visando inibir KRAS diretamente falharam e a caracterização de alvos indiretos, importantes para a oncogênese mediada por KRAS, é fundamental para o desenvolvimento de novas terapias contra o câncer de pulmão. Nós mostramos previamente que as quinases Aurora A (AURKA) e B (AURKB) são alvos a jusante de KRAS, importantes para o crescimento, viabilidade e oncogenicidade de linhagens celulares derivadas de tumores pulmonares mediados por KRAS. Aqui, nós aprofundamos os nossos estudos para melhor caracterizar AURKA e AURKB como potenciais alvos terapêuticos no câncer de pulmão. Os objetivos deste trabalho foram (1) investigar o mecanismo de perda de viabilidade induzido pela inibição de AURKA e/ou AURKB; (2) avaliar como a inibição de AURKA e/ou AURKB afeta propriedades oncogênicas relacionadas à agressividade tumoral; e (3) como a inibição destas quinases afeta o crescimento tumoral in vivo. Para tanto, nós utilizamos dois modelos celulares: (1) células A549 e H358, que apresentam mutações em KRAS, geneticamente modificadas para a expressão estável e induzível de shRNAs contra AURKA ou AURKB, e (2) células tumorais H1703, que não apresentam mutações em KRAS, geneticamente modificadas para a expressão induzível de KRASG12V, tratadas ou não com inibidores farmacológicos das quinases Aurora. A inibição farmacológica ou por interferência de RNA de AURKA e/ou AURKB em células H358 e A549 reduziu a proliferação celular, sendo esta inibição acompanhada de anomalias mitóticas, além de aneuploidia e poliploidia. A inibição destas quinases também induziu morte celular in vitro, tanto em mitose, quanto em interfase. Mais interessantemente, a inibição farmacológica dual de AURKA e AURKB induziu morte celular in vitro em células H1703, somente na presença de KRASG12V, indicando que a inibição das quinases Aurora afeta preferencialmente células portadoras de mutações em KRAS. Além disso, a inibição de AURKA e/ou AURKB reduziu propriedades malignas celulares relacionadas à agressividade tumoral, como migração, invasão e adesão. Finalmente, a inibição de AURKA por RNA de interferência em células A549 também reduziu a formação de tumores in vivo. Entretanto, como a inibição destas quinases levou a anomalias mitóticas e à instabilidade genética, nós resolvemos investigar se a inibição de TPX2, um substrato e ativador de AURKA, poderia ser uma abordagem alternativa para inibir esta via em câncer de pulmão induzido por KRAS. Primeiramente, nós observamos nos nossos modelos celulares que KRAS regula positivamente a expressão de TPX2. Além disso, a inibição de TPX2 em células pulmonares portadoras de KRAS oncogênica reduziu a viabilidade e proliferação celulares e induziu morte celular. Mais interessantemente, esses efeitos ocorreram preferencialmente em células que expressam KRAS oncogênica. Em conclusão, nossos resultados apoiam a hipótese de que a ativação de AURKA/TPX2 e AURKB por KRAS são eventos importantes no câncer de pulmão e sugerem a inibição destas vias, possivelmente em combinação com outras terapias citotóxicas, como uma nova abordagem terapêutica para o câncer de pulmão induzido por KRAS.Lung cancer is the leading cause of cancer-related deaths worldwide. KRAS mutations are widespread in lung cancer and have been causally linked to tumorigenesis. Nonetheless, therapies targeting KRAS directly have so far failed and characterization of indirect KRAS targets, which play important roles in KRAS-mediated oncogenesis, is crucial for the development of new therapies for lung cancer. We have previously shown that mitotic kinases Aurora A (AURKA) and B (AURKB) are downstream targets of oncogenic KRAS, important for the growth, viability, and oncogenicity of KRAS-transformed lung cancer cell lines. Here, we studied these kinases more in depth in order to better characterize them as potential therapeutical targets for KRAS-induced lung cancer. The aims of this study were (1) to investigate the mechanism leading to loss of viability upon AURKA and/or AURKB targeting; (2) to evaluate how AURKA and/or AURKB inhibition affects malignant properties associated with tumor aggressiveness; and (3) to determine whether AURKA and/or AURKB inhibition reduces KRAS-induced tumor growth in vivo. For that purpose, we used two cell-based models: (1) KRAS mutant A549 and H358 cells with stable and inducible shRNA-mediated knockdown of AURKA or AURKB, and (2) KRAS wildtype H1703 tumor cell lines, genetically engineered to inducibly express oncogenic KRASG12V treated or not with Aurora kinase pharmacological inhibitors. Targeting AURKA and/or AURKB pharmacologically or by RNA interference in H358 and A549 cells led to decreased cell proliferation, which was accompanied by mitotic abnormalities, leading to aneuploidy and hyperploidy. Aurora kinase targeting also induced cell death in vitro, both during mitosis and interphase. More importantly, AURKA and AURKB inhibition with a dual pharmacological inhibitor in H1703 cells induced cell death in vitro, but only in the presence of KRASG12V, indicating that Aurora kinase targeting affects preferentially lung cells harboring oncogenic KRAS. Furthermore, AURKA and/or AURKB targeting reduced malignant properties associated with tumor aggressiveness, such as cell migration, invasion and adhesion. Finally, AURKA targeting by RNA interference in A549 cells also reduced growth of xenograft tumors in vivo. Nonetheless, since Aurora targeting was associated with mitotic abnormalities and genetic instability, we decided to investigate if targeting TPX2, a substrate and an activator of AURKA, could constitute an alternative approach to targeting this pathway in KRAS-induced lung cancer. First, using our cell-based models, we determined that KRAS positively regulates TPX2 expression. In addition, TPX2 inhibition by RNA interference in KRAS-positive lung cells reduced cell viability and proliferation and induced cell death. Finally, these effects occurred preferentially in cells harboring oncogenic KRAS. In conclusion, our results support the hypothesis that activation of AURKA/TPX2 and AURKB by KRAS are important events in lung cancer and suggest inhibition of these pathways, possibly in combination with other cytotoxic therapies, as a new approach for KRAS-induced lung cancer therapy

    Investigation of Aurora A and Aurora B kinases as potential targets in KRAS-induced lung cancer

    No full text
    As alterações genéticas mais frequentes em tumores de pulmão são mutações pontuais que ativam o oncogene KRAS. Apesar destas mutações estarem ligadas à oncogênese de forma causal, diferentes abordagens para inibir as proteínas RAS diretamente fracassaram na clínica. Portanto, para que melhores alvos terapêuticos para o câncer de pulmão se tornem disponíveis, será necessário identificar as vias sinalizadoras ativadas pela proteína KRAS, que são críticas para a oncogênese. O objetivo deste projeto foi identificar novos alvos terapêuticos na oncogênese pulmonar induzida pela KRAS. Este projeto se baseou na seguinte hipótese: (1) a KRAS oncogênica leva à ativação das quinases mitóticas Aurora A e/ou B e (2) que as quinases Aurora A e/ou B são alvos terapêuticos relevantes no câncer de pulmão induzido pelo oncogene KRAS. Esta hipótese foi formulada com base em estudos anteriores mostrando que a quinase Aurora A fosforila diretamente componentes das vias efetoras de RAS, e que a Aurora A e Aurora B cooperam com a RAS oncogênica na transformação maligna. Para testar esta hipótese, nós inicialmente determinamos se a forma oncogênica da KRAS induz a expressão das quinases Aurora A e B. Para tanto, nós usamos 3 modelos celulares: (1) uma linhagem primária epitelial pulmonar imortalizada e seu par isogênico transformado pela KRAS oncogênica; (2) células tumorais pulmonares H1703 manipuladas geneticamente para expressar a forma oncogênica da KRAS de forma induzível; e (3) células de adenocarcinoma pulmonar portadoras de mutações oncogênicas em KRAS H358 e A549 manipuladas geneticamente para expressar short hairpin RNAs (shRNAs) para KRAS de forma induzível. Em todos os casos, a expressão da forma oncogênica da KRAS se correlacionou positivamente com a expressão de Aurora A e B. Para validar as quinases Aurora A e B como alvos relevantes do ponto de vista terapêutico, nós usamos, nas células mencionadas acima, abordagens genéticas ou farmacológicas para inibir a expressão ou atividade das quinases Aurora A e B. Nas células A549 e H358, portadoras da forma oncogênica da KRAS, a inibição da expressão das quinases Aurora A ou B por interferência de RNA de forma induzível, bem como o tratamento com um inibidor dual destas quinases, reduziu o crescimento, viabilidade e tumorigenicidade celulares in vitro. Mais importante do que isso, no modelo celular primário isogênico, bem como na linhagem H1703 com expressão induzível de KRAS oncogênica, a inibição farmacológica dual das quinases Aurora A e B levou a uma redução no crescimento, viabilidade e tumorigenicidade celulares de forma dependente da presença da KRAS oncogênica, sugerindo que a inibição das quinases Aurora A e B afeta especificamente células transformadas pela KRAS. Em conclusão, nossos resultados apoiam a nossa hipótese de que as quinases Aurora são alvos da KRAS oncogênica no pulmão, e sugerem a inibição das quinases Aurora como uma nova abordagem para a terapia do câncer de pulmão induzido pela forma oncogênica da KRAS.The most frequent genetic change found in lung tumors are activating point mutations in the KRAS gene, which have been causally linked to the oncogenic process. Unfortunately, different approaches to target RAS proteins for therapy have been unsuccessful. Therefore, in order to select better targets for lung cancer therapy, key cancer-relevant KRAS downstream pathways will need to be identified. The overall objective of this study was to identify novel therapeutic targets in KRAS-mediated lung cancer. This project was based on the following hypothesis: (1) KRAS activates mitotic kinases Aurora A and/or B; and (2) Aurora A and/or B are relevant therapeutic targets in KRAS-induced lung cancer. This hypothesis was formulated on the basis of published studies showing that Aurora A directly phosphorylates RAS effector pathway components, and Aurora A and B both cooperate with oncogenic RAS to promote malignant transformation. In order to test this hypothesis, we first determined whether oncogenic KRAS induces Aurora kinase expression. For that purpose, we used three different cell-based models: (1) an immortalized primary lung epithelial cell line and its isogenic KRAS-transformed counterpart, (2) H1703 lung cancer cell line engineered to express oncogenic KRAS inducibly, and (3) KRAS positive lung cancer cell lines H358 and A549 stably expressing inducible shRNAs targeting KRAS. In all cases, KRAS expression positively correlated with Aurora A and Aurora B expression. In order to validate Aurora A and/or B as therapeutically relevant KRAS targets in lung cancer, we used genetic and/or pharmacological approaches in the abovementioned cells to inactivate Aurora A or B. In KRAS positive H358 and A549 cell lines, inducible shRNA-mediated knockdown of Aurora A or B, as well as treatment with a dual Aurora A and B inhibitor, decreased growth, viability and tumorigenicity in vitro. More importantly, in the primary isogenic model and in the H1703 KRAS-inducible cell line, dual pharmacological inhibiton of Aurora A and B reduced growth, viability and tumorigenicity in an oncogenic KRAS-dependent manner. This suggests that Aurora kinase inhibition therapy can specifically target KRAS transformed cells. In conclusion, our results support our hypothesis that Aurora kinases are important KRAS targets in lung cancer and suggest Aurora kinase inhibition as a novel approach for KRAS-induced lung cancer therapy

    Aurora kinase targeting in lung cancer reduces KRAS-induced transformation

    Get PDF
    Background: Activating mutations in KRAS are prevalent in lung cancer and have been causally linked to the oncogenic process. However, therapies targeted to oncogenic RAS have been ineffective to date and identification of KRAS targets that impinge on the oncogenic phenotype is warranted. Based on published studies showing that mitotic kinases Aurora A (AURKA) and B (AURKB) cooperate with oncogenic RAS to promote malignant transformation and that AURKA phosphorylates RAS effector pathway components, the aim of this study was to investigate whether AURKA and AURKB are KRAS targets in lung cancer and whether targeting these kinases might be therapeutically beneficial. Methods: In order to determine whether oncogenic KRAS induces Aurora kinase expression, we used qPCR and western blotting in three different lung cell-based models of gain- or loss-of-function of KRAS. In order to determine the functional role of these kinases in KRAS-induced transformation, we generated KRAS-positive A549 and H358 cells with stable and inducible shRNA-mediated knockdown of AURKA or AURKB and evaluated transformation in vitro and tumor growth in vivo. In order to validate AURKA and/or AURKB as therapeutically relevant KRAS targets in lung cancer, we treated A549 and H358 cells, as well as two different lung cell based models of gain-of-function of KRAS with a dual Aurora kinase inhibitor and performed functional in vitro assays. Results: We determined that KRAS positively regulates AURKA and AURKB expression. Furthermore, in KRAS-positive H358 and A549 cell lines, inducible knockdown of AURKA or AURKB, as well as treatment with a dual AURKA/AURKB inhibitor, decreased growth, viability, proliferation, transformation, and induced apoptosis in vitro. In addition, inducible shRNA-mediated knockdown of AURKA in A549 cells decreased tumor growth in vivo. More importantly, dual pharmacological inhibiton of AURKA and AURKB reduced growth, viability, transformation, and induced apoptosis in vitro in an oncogenic KRAS-dependent manner, indicating that Aurora kinase inhibition therapy can specifically target KRAS-transformed cells. Conclusions: Our results support our hypothesis that Aurora kinases are important KRAS targets in lung cancer and suggest Aurora kinase inhibition as a novel approach for KRAS-induced lung cancer therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0494-6) contains supplementary material, which is available to authorized users
    corecore