475 research outputs found

    Hsp90 and associated co-chaperones of the Malaria parasite

    Get PDF
    Heat shock protein 90 (Hsp90) is one of the major guardians of cellular protein homeostasis, through its specialized molecular chaperone properties. While Hsp90 has been extensively studied in many prokaryotic and higher eukaryotic model organisms, its structural, functional, and biological properties in parasitic protozoans are less well defined. Hsp90 collaborates with a wide range of co-chaperones that fine-tune its protein folding pathway. Co-chaperones play many roles in the regulation of Hsp90, including selective targeting of client proteins, and the modulation of its ATPase activity, conformational changes, and post-translational modifications. Plasmodium falciparum is responsible for the most lethal form of human malaria. The survival of the malaria parasite inside the host and the vector depends on the action of molecular chaperones. The major cytosolic P. falciparum Hsp90 (PfHsp90) is known to play an essential role in the development of the parasite, particularly during the intra-erythrocytic stage in the human host. Although PfHsp90 shares significant sequence and structural similarity with human Hsp90, it has several major structural and functional differences. Furthermore, its co-chaperone network appears to be substantially different to that of the human host, with the potential absence of a key homolog. Indeed, PfHsp90 and its interface with co-chaperones represent potential drug targets for antimalarial drug discovery. In this review, we critically summarize the current understanding of the properties of Hsp90, and the associated co-chaperones of the malaria parasite

    Revisiting Jon McKenzie?s Perform or else: Performance, labour and pedagogy

    Get PDF
    Tim Edkins and Stevphen Shukaitis interviewed Jon McKenzie on 24 March 2013 about his book Perform or else: From discipline to performance (2001a), its current resonance and his recent research. We begin by asking about Perform or else?s playful tone and composition. Then we ask about contemporary labour struggles, including in the state of Wisconsin where he is based as a Professor of English and Director of DesignLab at University of Wisconsin. We end by discussing how he sees the current role of the university. We focus on how DesignLab forms part of his applied research program, based on the multifaceted conception of performance theorised in Perform or else and instantiated in higher education

    Immunoglobulin G; structure and functional implications of different subclass modifications in initiation and resolution of allergy.

    Get PDF
    IgE and not IgG is usually associated with allergy. IgE lodged on mast cells in skin or gut and basophils in the blood allows for the prolonged duration of allergy through the persistent expression of high affinity IgE receptors. However, many allergic reactions are not dependent on IgE and are generated in the absence of allergen specific and even total IgE. Instead, IgG plasma cells are involved in induction of, and for much of the pathogenesis of, allergic diseases. The pattern of IgG producing plasma cells in atopic children and the tendency for direct or further class switching to IgE are the principle factors responsible for long-lasting sensitization of mast cells in allergic children. Indirect class switching from IgG producing plasma cells has been shown to be the predominant pathway for production of IgE while a Th2 microenvironment, genetic predisposition, and the concentration and nature of allergens together act on IgG plasma cells in the atopic tendency to undergo further immunoglobulin gene recombination. The seminal involvement of IgG in allergy is further indicated by the principal role of IgG4 in the natural resolution of allergy and as the favourable immunological response to immunotherapy. This paper will look at allergy through the role of different antibodies than IgE and give current knowledge of the nature and role of IgG antibodies in the start, maintenance and resolution of allergy

    Halogenated oxindole and indoles from the South African marine ascidian Distaplia skoogi:

    Get PDF
    The known 3,6-dibromoindole (1), 6-bromo-3-chloroindole (2) and 6-bromo-2-oxindole (3) were isolated from the marine ascidian (sea squirt) Distapia skoogi collected from Algoa Bay, South Africa. Standard spectroscopic techniques were used to elucidate the structures of 1-3. All three compounds were found to be moderately cytotoxic to metastatic MDA-MB-231 breast cancer cells

    Zeb1 modulates hematopoietic stem cell fates required for suppressing acute myeloid leukemia

    Get PDF
    Zeb1, a zinc finger E-box binding homeobox epithelial-mesenchymal (EMT) transcription factor, confers properties of ‘stemness’, such as self-renewal, in cancer. Yet little is known about the function of Zeb1 in adult stem cells. Here, we used the hematopoietic system, as a well-established paradigm of stem cell biology, to evaluate Zeb1 mediated regulation of adult stem cells. We employed a conditional genetic approach using the Mx1-Cre system to specifically knockout (KO) Zeb1 in adult hematopoietic stem cells (HSCs) and their downstream progeny. Acute genetic deletion of Zeb1 led to rapid onset thymic atrophy and apoptosis driven loss of thymocytes and T cells. A profound cell-autonomous self-renewal defect and multi-lineage differentiation block was observed in Zeb1 KO HSCs. Loss of Zeb1 in HSCs activated transcriptional programs of deregulated HSC maintenance and multi-lineage differentiation genes, and of cell polarity, consisting of cytoskeleton, lipid metabolism/lipid membrane and cell adhesion related genes. Notably, Epithelial cell adhesion molecule (EpCAM) expression was prodigiously upregulated in Zeb1 KO HSCs, which correlated with enhanced cell survival, diminished mitochondrial metabolism, ribosome biogenesis, and differentiation capacity and an activated transcriptomic signature associated with acute myeloid leukemia (AML) signaling. ZEB1 expression was downregulated in AML patients and Zeb1 KO in the malignant counterparts of HSCs - leukemic stem cells (LSCs) - accelerated MLL-AF9 and Meis1a/Hoxa9-driven AML progression, implicating Zeb1 as a tumor suppressor in AML LSCs. Thus, Zeb1 acts as a transcriptional regulator in hematopoiesis, critically co-ordinating HSC self-renewal, apoptotic and multi-lineage differentiation fates required to suppress leukemic potential in AML

    Assessment of potential anti-cancer stem cell activity of marine algal compounds using an in vitro mammosphere assay:

    Get PDF
    The cancer stem cell (CSC) theory proposes that tumours arise from and are sustained by a subpopulation of cells with both cancer and stem cell properties. One of the key hallmarks of CSCs is the ability to grow anchorage-independently under serum-free culture conditions resulting in the formation of tumourspheres. It has further been reported that these cells are resistant to traditional chemotherapeutic agents

    LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with increased sensitivity to MAPK and mTOR signalling inhibition

    Get PDF
    LKB1/STK11 is a multitasking tumour suppressor kinase. Germline inactivating mutations of the gene are responsible for the Peutz-Jeghers hereditary cancer syndrome. It is also somatically inactivated in approximately 30% of non-small-cell lung cancer (NSCLC). Here, we report that LKB1/KRAS mutant NSCLC cell lines are sensitive to the MEK inhibitor CI-1040 shown by a dose-dependent reduction in proliferation rate, whereas LKB1 and KRAS mutations alone do not confer similar sensitivity. We show that this subset of NSCLC is also sensitised to the mTOR inhibitor rapamycin. Importantly, the data suggest that LKB1/KRAS mutant NSCLCs are a genetically and functionally distinct subset and further suggest that this subset of lung cancers might afford an opportunity for exploitation of anti-MAPK/mTOR-targeted therapies
    corecore