16 research outputs found
THE CY PRES DOCTRINE AND CHANGING PHILOSOPHIES
The cy pres doctrine arose so far back in antiquity that its origins are obscure. Apparently it was known and used in Roman law, for an application of the cy pres doctrine is reported in the Digest of Justinian. In the early part of the third century a city received a legacy bequeathed for the purpose of commemorating the memory of the donor by using the income of the legacy to hold yearly games. As such games were illegal at that time a problem arose concerning the disposition of the legacy. Modestinus, a well known jurist, found the solution
DenseNet and Support Vector Machine classifications of major depressive disorder using vertex-wise cortical features
Major depressive disorder (MDD) is a complex psychiatric disorder that
affects the lives of hundreds of millions of individuals around the globe. Even
today, researchers debate if morphological alterations in the brain are linked
to MDD, likely due to the heterogeneity of this disorder. The application of
deep learning tools to neuroimaging data, capable of capturing complex
non-linear patterns, has the potential to provide diagnostic and predictive
biomarkers for MDD. However, previous attempts to demarcate MDD patients and
healthy controls (HC) based on segmented cortical features via linear machine
learning approaches have reported low accuracies. In this study, we used
globally representative data from the ENIGMA-MDD working group containing an
extensive sample of people with MDD (N=2,772) and HC (N=4,240), which allows a
comprehensive analysis with generalizable results. Based on the hypothesis that
integration of vertex-wise cortical features can improve classification
performance, we evaluated the classification of a DenseNet and a Support Vector
Machine (SVM), with the expectation that the former would outperform the
latter. As we analyzed a multi-site sample, we additionally applied the ComBat
harmonization tool to remove potential nuisance effects of site. We found that
both classifiers exhibited close to chance performance (balanced accuracy
DenseNet: 51%; SVM: 53%), when estimated on unseen sites. Slightly higher
classification performance (balanced accuracy DenseNet: 58%; SVM: 55%) was
found when the cross-validation folds contained subjects from all sites,
indicating site effect. In conclusion, the integration of vertex-wise
morphometric features and the use of the non-linear classifier did not lead to
the differentiability between MDD and HC. Our results support the notion that
MDD classification on this combination of features and classifiers is
unfeasible