632 research outputs found

    The 2-10 keV XRB dipole and its cosmological implications

    Full text link
    The hard X-ray (>2 keV) emission of the local and distant Universe as observed with the HEAO1-A2 experiment is reconsidered in the context of large scale cosmic structure. Using all-sky X-ray samples of AGN and galaxy clusters we remove the dominant local X-ray flux from within a redshift of ~ 0.02. We evaluate the dipolar and higher order harmonic structure in 4 X-ray colours. The estimated dipole anisotropy of the unresolved flux appears to be consistent with a combination of the Compton-Getting effect due to the Local Group motion (dipole amplitude Delta = 0.0042) and remaining large scale structure (0.0023 <~ Delta <~ 0.0085), in good agreement with the expectations of Cold Dark Matter models. The observed anisotropy does however also suggest a non-negligible Galactic contribution which is more complex than current, simple models of >2 keV Galactic X-ray emission. Comparison of the soft and hard colour maps with a harmonic analysis of the 1.5 keV ROSAT all-sky data qualitatively suggests that at least a third of the faint, unresolved ~ 18 deg scale structure in the HEAO1-A2 data may be Galactic in origin. However, the effect on measured flux dipoles is small (<~3%). We derive an expression for dipole anisotropy and acceleration and demonstrate how the dipole anisotropy of the distant X-ray frame can constrain the amplitude of bulk motions of the universe. From observed bulk motions over a local ~ 50 Mpc/h radius volume we determine 0.14 <~ Omega^0.6/b_x(0) <~ 0.59.Comment: 39 pages, Revised version accepted ApJ Main Journal, 3 new Figures + additional tex

    Simulating the Hot X-ray Emitting Gas in Elliptical Galaxies

    Get PDF
    We study the chemo-dynamical evolution of elliptical galaxies and their hot X-ray emitting gas using high-resolution cosmological simulations. Our Tree N-body/SPH code includes a self-consistent treatment of radiative cooling, star formation, supernovae feedback, and chemical enrichment. We present a series of LCDM cosmological simulations which trace the spatial and temporal evolution of heavy element abundance patterns in both the stellar and gas components of galaxies. X-ray spectra of the hot gas are constructed via the use of the vmekal plasma model, and analysed using XSPEC with the XMM EPN response function. Simulation end-products are quantitatively compared with the observational data in both the X-ray and optical regime. We find that radiative cooling is important to interpret the observed X-ray luminosity, temperature, and metallicity of the interstellar medium of elliptical galaxies. However, this cooled gas also leads to excessive star formation at low redshift, and therefore results in underlying galactic stellar populations which are too blue with respect to observations.Comment: 6 pages, 3 figures, to appear in the proceedings of "The IGM/Galaxy Connection - The Distribution of Baryons at z=0", ed. M. Putman & J. Rosenberg; High resolution version is available at http://astronomy.swin.edu.au/staff/dkawata/research/papers.htm

    Why Do Only Some Galaxy Clusters Have Cool Cores?

    Full text link
    Flux-limited X-ray samples indicate that about half of rich galaxy clusters have cool cores. Why do only some clusters have cool cores while others do not? In this paper, cosmological N-body + Eulerian hydrodynamic simulations, including radiative cooling and heating, are used to address this question as we examine the formation and evolution of cool core (CC) and non-cool core (NCC) clusters. These adaptive mesh refinement simulations produce both CC and NCC clusters in the same volume. They have a peak resolution of 15.6 h^{-1} kpc within a (256 h^{-1} Mpc)^3 box. Our simulations suggest that there are important evolutionary differences between CC clusters and their NCC counterparts. Many of the numerical CC clusters accreted mass more slowly over time and grew enhanced cool cores via hierarchical mergers; when late major mergers occurred, the CC's survived the collisions. By contrast, NCC clusters experienced major mergers early in their evolution that destroyed embryonic cool cores and produced conditions that prevented CC re-formation. As a result, our simulations predict observationally testable distinctions in the properties of CC and NCC beyond the core regions in clusters. In particular, we find differences between CC versus NCC clusters in the shapes of X-ray surface brightness profiles, between the temperatures and hardness ratios beyond the cores, between the distribution of masses, and between their supercluster environs. It also appears that CC clusters are no closer to hydrostatic equilibrium than NCC clusters, an issue important for precision cosmology measurements.Comment: 17 emulateapj pages, 17 figures, replaced with version accepted to Ap

    Merger Dynamics of the Pair of Galaxy Clusters -- A399 and A401

    Full text link
    Convincing evidence of a past interaction between two rich clusters A399 and A401 was recently found by the X-ray imaging observations. In this paper we examine the structure and dynamics of this pair of galaxy clusters. A mixture-modeling algorithm has been applied to obtain a robust partition into two clusters, which allows us to discuss the virial mass and velocity distribution for each cluster. Assuming that these two clusters follow a linear orbit and they have once experienced a close encounter, we model the binary cluster as a two-body system. As a result, four gravitationally bound solutions are obtained. The recent X-ray observations seem to favor a scenario in which the two clusters with a true separation of 5.4h15.4h^{-1} Mpc are currently expanding at 583 km/s along the direction with a projection angle of 67.5 degree, and they will reach a maximum extent of 5.65h15.65h^{-1} Mpc in about 1.0h11.0h^{-1} Gyr.Comment: 11 pages, including 6 EPS figures and 4 tables, uses chjaa.cls, Accepted by the ChJA

    Chandra Observations of the Disruption of the Cool Core in Abell 133

    Full text link
    We present the analysis of a Chandra observation of the galaxy cluster Abell 133, which has a cooling flow core, a central radio source, and a diffuse, filamentary radio source which has been classified as a radio relic. The X-ray image shows that the core has a complex structure. The most prominent feature is a "tongue" of emission which extends from the central cD galaxy to the northwest and partly overlaps the radio relic. One possibility is that this tongue is produced by Kelvin-Helmholtz (KH) instabilities through the interaction between the cold gas around the cD galaxy and hot intracluster medium. We estimate the critical velocity and time scale for the KH instability to be effective for the cold core around the cD galaxy. We find that the KH instability can disrupt the cold core if the relative velocity is >~400 km s^-1. We compare the results with those of clusters in which sharp, undisrupted cold fronts have been observed; in these clusters, the low temperature gas in their central regions has a more regular distribution. In contrast to Abell 133, these cluster cores have longer timescales for the disruption of the core by the KH instability when they are normalized to the timescale of the cD galaxy motion. Thus, the other cores are less vulnerable to KH instability. Another possible origin of the tongue is that it is gas which has been uplifted by a buoyant bubble of nonthermal plasma that we identify with the observed radio relic. From the position of the bubble and the radio estimate of the age of the relic source, we estimate avelocity of ~700 km s^-1 for the bubble. The structure of the bubble and this velocity are consistent with numerical models for such buoyant bubbles. (abridged)Comment: 38 pages, 15 figures, accepted for publication in Ap

    Lithium-ion battery second life:pathways, challenges and outlook

    Get PDF
    Net zero targets have resulted in a drive to decarbonise the transport sector worldwide through electrification. This has, in turn, led to an exponentially growing battery market and, conversely, increasing attention on how we can reduce the environmental impact of batteries and promote a more efficient circular economy to achieve real net zero. As these batteries reach the end of their first life, challenges arise as to how to collect and process them, in order to maximise their economical use before finally being recycled. Despite the growing body of work around this topic, the decision-making process on which pathways batteries could take is not yet well understood, and clear policies and standards to support implementation of processes and infrastructure are still lacking. Requirements and challenges behind recycling and second life applications are complex and continue being defined in industry and academia. Both pathways rely on cell collection, selection and processing, and are confronted with the complexities of pack disassembly, as well as a diversity of cell chemistries, state-of-health, size, and form factor. There are several opportunities to address these barriers, such as standardisation of battery design and reviewing the criteria for a battery’s end-of-life. These revisions could potentially improve the overall sustainability of batteries, but may require policies to drive such transformation across the industry. The influence of policies in triggering a pattern of behaviour that favours one pathway over another are examined and suggestions are made for policy amendments that could support a second life pipeline, while encouraging the development of an efficient recycling industry. This review explains the different pathways that end-of-life EV batteries could follow, either immediate recycling or service in one of a variety of second life applications, before eventual recycling. The challenges and barriers to each pathway are discussed, taking into account their relative environmental and economic feasibility and competing advantages and disadvantages of each. The review identifies key areas where processes need to be simplified and decision criteria clearly defined, so that optimal pathways can be rapidly determined for each end-of-life battery

    The Mass Function of an X-Ray Flux-Limited Sample of Galaxy Clusters

    Get PDF
    A new X-ray selected and X-ray flux-limited galaxy cluster sample is presented. Based on the ROSAT All-Sky Survey the 63 brightest clusters with galactic latitude |bII| >= 20 deg and flux fx(0.1-2.4 keV) >= 2 * 10^{-11} ergs/s/cm^2 have been compiled. Gravitational masses have been determined utilizing intracluster gas density profiles, derived mainly from ROSAT PSPC pointed observations, and gas temperatures, as published mainly from ASCA observations, assuming hydrostatic equilibrium. This sample and an extended sample of 106 galaxy clusters is used to establish the X-ray luminosity--gravitational mass relation. From the complete sample the galaxy cluster mass function is determined and used to constrain the mean cosmic matter density and the amplitude of mass fluctuations. Comparison to Press--Schechter type model mass functions in the framework of Cold Dark Matter cosmological models and a Harrison--Zeldovich initial density fluctuation spectrum yields the constraints OmegaM = 0.12^{+0.06}_{-0.04} and sigma8 = 0.96^{+0.15}_{-0.12} (90% c.l.). Various possible systematic uncertainties are quantified. Adding all identified systematic uncertainties to the statistical uncertainty in a worst case fashion results in an upper limit OmegaM < 0.31. For comparison to previous results a relation sigma8 = 0.43 OmegaM^{-0.38} is derived. The mass function is integrated to show that the contribution of mass bound within virialized cluster regions to the total matter density is small, i.e., OmegaCluster = 0.012^{+0.003}_{-0.004} for cluster masses larger than 6.4^{+0.7}_{-0.6} * 10^{13} h_{50}^{-1} Msun.Comment: 35 pages; accepted for publication in The Astrophysical Journal; this and related papers, supplementary information, as well as electronic files of the tables given in this paper are available at http://www.astro.virginia.edu/~thr4f

    Magnetic Field Evolution in Merging Clusters of Galaxies

    Get PDF
    We present initial results from the first 3-dimensional numerical magnetohydrodynamical (MHD) simulations of magnetic field evolution in merging clusters of galaxies. Within the framework of idealized initial conditions similar to our previous work, we look at the gasdynamics and the magnetic field evolution during a major merger event in order to examine the suggestion that shocks and turbulence generated during a cluster/subcluster merger can produce magnetic field amplification and relativistic particle acceleration and, as such, may play a role in the formation and evolution of cluster-wide radio halos. The ICM, as represented by the equations of ideal MHD, is evolved self-consistently within a changing gravitational potential defined largely by the collisionless dark matter component represented by an N-body particle distribution. The MHD equations are solved by the Eulerian, finite-difference code, ZEUS. The particles are evolved by a standard particle-mesh (PM) code. We find significant evolution of the magnetic field structure and strength during two distinct epochs of the merger evolution.Comment: 21 pages, 7 figures, Figure 2 is color postscript. Accepted for publication in Ap

    On special quadratic birational transformations of a projective space into a hypersurface

    Full text link
    We study transformations as in the title with emphasis on those having smooth connected base locus, called "special". In particular, we classify all special quadratic birational maps into a quadric hypersurface whose inverse is given by quadratic forms by showing that there are only four examples having general hyperplane sections of Severi varieties as base loci.Comment: Accepted for publication in Rendiconti del Circolo Matematico di Palerm
    corecore