10 research outputs found

    Additional file 1: of Predominance of Uganda genotype of Mycobacterium tuberculosis isolated from Ugandan patients with tuberculous lymphadenitis

    No full text
    Table S1. A summary of genotyping, demographic and epidemiologic data on 121 M. tuberculosis strains isolated from Ugandan patient with tuberculous lymphadenitis

    Prevalence and patterns of rifampicin and isoniazid resistance conferring mutations in <i>Mycobacterium tuberculosis</i> isolates from Uganda

    No full text
    <div><p>Background</p><p>Accurate diagnosis of tuberculosis, especially by using rapid molecular assays, can reduce transmission of drug resistant tuberculosis in communities. However, the frequency of resistance conferring mutations varies with geographic location of <i>Mycobacterium tuberculosis</i>, and this affects the efficiency of rapid molecular assays in detecting resistance. This has created need for characterizing drug resistant isolates from different settings to investigate frequencies of resistance conferring mutations. Here, we describe the prevalence and patterns of rifampicin- and isoniazid- resistance conferring mutations in isolates from Uganda, which could be useful in the management of MDR-TB patients in Uganda and other countries in sub-Saharan Africa.</p><p>Results</p><p>Ninety seven <i>M</i>. <i>tuberculosis</i> isolates were characterized, of which 38 were MDR, seven rifampicin-resistant, 12 isoniazid-mono-resistant, and 40 susceptible to rifampicin and isoniazid. Sequence analysis of the <i>rpoB</i> rifampicin-resistance determining region (<i>rpoB</i>/RRDR) revealed mutations in six codons: 588, 531, 526, 516, 513, and 511, of which Ser531Leu was the most frequent (40%, 18/45). Overall, the three mutations (Ser531Leu, His526Tyr, Asp516Tyr) frequently associated with rifampicin-resistance occurred in 76% of the rifampicin resistant isolates while 18% (8/45) of the rifampicin-resistant isolates lacked mutations in <i>rpoB</i>/RRDR. Furthermore, sequence analysis of <i>katG</i> and <i>inhA</i> gene promoter revealed mainly the Ser315Thr (76%, 38/50) and C(-15)T (8%, 4/50) mutations, respectively. These two mutations combined, which are frequently associated with isoniazid-resistance, occurred in 88% of the isoniazid resistant isolates. However, 20% (10/50) of the isoniazid-resistant isolates lacked mutations both in <i>katG</i> and <i>inhA</i> gene promoter. The sensitivity of sequence analysis of <i>rpoB</i>/RRDR for rifampicin-resistance via detection of high confidence mutations (Ser531Leu, His526Tyr, Asp516Tyr) was 81%, while it was 77% for analysis of <i>katG</i> and <i>inhA</i> gene promoter to detect isoniazid-resistance via detection of high confidence mutations (Ser315Thr, C(-15)T, T(-8)C). Furthermore, considering the circulating TB genotypes in Uganda, the isoniazid-resistance conferring mutations were more frequent in <i>M</i>. <i>tuberculosis</i> lineage 4/sub-lineage Uganda, perhaps explaining why this genotype is weakly associated with MDR-TB.</p><p>Conclusion</p><p>Sequence analysis of <i>rpoB</i>/RRDR, <i>katG</i> and <i>inhA</i> gene promoter is useful in detecting rifampicin/isoniazid resistant <i>M</i>. <i>tuberculosis</i> isolates in Uganda however, about ≤20% of the resistant isolates lack known resistance-conferring mutations hence rapid molecular assays may not detect them as resistant.</p></div

    Pertussis Prevalence and Its Determinants among Children with Persistent Cough in Urban Uganda

    No full text
    <div><p>Background</p><p>We determined prevalence of pertussis infection and its associated host and environmental factors to generate information that would guide strategies for disease control.</p><p>Methods</p><p>In a cross-sectional study, 449 children aged 3 months to 12 years with persistent cough lasting ≥14 days were enrolled and evaluated for pertussis using DNA polymerase chain reaction (PCR) and ELISA serology tests.</p><p>Results</p><p>Pertussis prevalence was 67 (15% (95% Confidence Interval (CI): 12–18)) and 81 (20% (95% CI: 16–24)) by PCR and ELISA, respectively among 449 participating children. The prevalence was highest in children with >59 months of age despite high vaccination coverage of 94% in this age group. Study demographic and clinical characteristics were similar between pertussis and non-pertussis cases. Of the 449 children, 133 (30%) had a coughing household member and 316 (70%) did not. Among 133 children that had a coughing household member, sex of child, sharing bed with a coughing household member and having a coughing individual in the neighborhood were factors associated with pertussis. Children that had shared a bed with a coughing household individual had seven-fold likelihood of having pertussis compared to children that did not (odds ratio (OR) 7.16 (95% CI: 1.24–41.44)). Among the 316 children that did not have a coughing household member, age <23 months, having or contact with a coughing individual in neighborhood, a residence with one room, and having a caretaker with >40 years of age were the factors associated with pertussis. Age <23months was three times more likely to be associated with pertussis compared to age 24–59 months (OR 2.97 (95% CI: 1.07–8.28)).</p><p>Conclusion</p><p>Findings suggest high prevalence of pertussis among children with persistent cough at a health facility and it was marked in children >59 months of age, suggesting the possibility of waning immunity. The factors associated with pertussis varied by presence or absence of a coughing household member.</p></div

    Host and environmental factors associated with confirmed pertussis by PCR among 449 children at a national referral teaching hospital in Uganda stratified according to status of a coughing household member.

    No full text
    <p>PCR = Polymerase chain reaction; CI = Confidence Interval</p><p>Host and environmental factors associated with confirmed pertussis by PCR among 449 children at a national referral teaching hospital in Uganda stratified according to status of a coughing household member.</p
    corecore