2,811 research outputs found

    Spectral density for a hole in an antiferromagnetic stripe phase

    Full text link
    Using variational trial wave function based on the string picture we study the motion of a single mobile hole in the stripe phase of the doped antiferromagnet. The holes within the stripes are taken to be static, the undoped antiferromagnetic domains in between the hole stripes are assumed to have alternating staggered magnetization, as is suggested by neutron scattering experiments. The system is described by the t-t'-t''-J model with realistic parameters and we compute the single particle spectral density.Comment: RevTex-file, 9 PRB pages with 15 .eps and .gif files. To appear in PRB. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to: [email protected]

    First Experiences Integrating PC Distributed I/O Into Argonne's ATLAS Control System

    Full text link
    First Experiences Integrating PC Distributed I/O Into Argonne's ATLAS Control System The roots of ATLAS (Argonne Tandem-Linac Accelerator System) date back to the early 1960s. Located at the Argonne National Laboratory, the accelerator has been designated a National User Facility, which focuses primarily on heavy-ion nuclear physics. Like the accelerator it services, the control system has been in a constant state of evolution. The present real-time portion of the control system is based on the commercial product Vsystem [1]. While Vsystem has always been capable of distributed I/O processing, the latest offering of this product provides for the use of relatively inexpensive PC hardware and software. This paper reviews the status of the ATLAS control system, and describes first experiences with PC distributed I/O.Comment: ICALEPCS 2001 Conference, PSN WEAP027, 3 pages, 1 figur

    Determination of longitudinal and lateral directional aerodynamic characteristics of the B19B pressure-fed booster and the B19B booster/040A orbiter launch configuration

    Get PDF
    The 0.003366 scale models of the space shuttle pressure-fed booster and booster/orbiter configurations were tested in the MSFC 14-inch trisonic wind tunnel. The test was conducted as a static stability and control investigation over a Mach range of 0.60 to 5.00. The booster alone configuration was tested with various tail sizes, tail wedge angles, tail flaps, spoilers, and a body flare drag skirt. Two launch configurations were tested; one being the MSC orbiter location on the booster tank and the other being the North American Rockwell orbiter location. Orbiter buildup, longitudinal position, incidence angle, and booster tail on and off were the variables for launch configuration. Booster alone models were pitched over an angle of attack range of -4 to +14 and +20 to +60 deg at zero deg yaw angle and yawed over an angle of sideslip range of -10 to +10 deg at 52 deg angle of attack. Launch configuration models were yawed -10 to +10 deg at zero degrees angle of attack and yawed -10 to +10 deg at zero and -6 deg angle of attack. All models were rolled 45 deg during selected runs

    Excitation spectrum of the homogeneous spin liquid

    Full text link
    We discuss the excitation spectrum of a disordered, isotropic and translationally invariant spin state in the 2D Heisenberg antiferromagnet. The starting point is the nearest-neighbor RVB state which plays the role of the vacuum of the theory, in a similar sense as the Neel state is the vacuum for antiferromagnetic spin wave theory. We discuss the elementary excitations of this state and show that these are not Fermionic spin-1/2 `spinons' but spin-1 excited dimers which must be modeled by bond Bosons. We derive an effective Hamiltonian describing the excited dimers which is formally analogous to spin wave theory. Condensation of the bond-Bosons at zero temperature into the state with momentum (pi,pi) is shown to be equivalent to antiferromagnetic ordering. The latter is a key ingredient for a microscopic interpretation of Zhang's SO(5) theory of cuprate superconductivityComment: RevTex-file, 16 PRB pages with 13 embedded eps figures. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to: [email protected]

    Single-hole dynamics in the half-filled two-dimensional Kondo-Hubbard model

    Full text link
    We consider the Kondo lattice model in two dimensions at half filling. In addition to the fermionic hopping integral tt and the superexchange coupling JJ the role of a Coulomb repulsion UU in the conduction band is investigated. We find the model to display a magnetic order-disorder transition in the U-J plane with a critical value of J_c which is decreasing as a function of U. The single particle spectral function A(k,w) is computed across this transition. For all values of J > 0, and apart from shadow features present in the ordered state, A(k,w) remains insensitive to the magnetic phase transition with the first low-energy hole states residing at momenta k = (\pm \pi, \pm \pi). As J -> 0 the model maps onto the Hubbard Hamiltonian. Only in this limit, the low-energy spectral weight at k = (\pm \pi, \pm \pi) vanishes with first electron removal-states emerging at wave vectors on the magnetic Brillouin zone boundary. Thus, we conclude that (i) the local screening of impurity spins determines the low energy behavior of the spectral function and (ii) one cannot deform continuously the spectral function of the Mott-Hubbard insulator at J=0 to that of the Kondo insulator at J > J_c. Our results are based on both, T=0 Quantum Monte-Carlo simulations and a bond-operator mean-field theory.Comment: 8 pages, 7 figures. Submitted to PR

    Anomalous low doping phase of the Hubbard model

    Full text link
    We present results of a systematic Quantum-Monte-Carlo study for the single-band Hubbard model. Thereby we evaluated single-particle spectra (PES & IPES), two-particle spectra (spin & density correlation functions), and the dynamical correlation function of suitably defined diagnostic operators, all as a function of temperature and hole doping. The results allow to identify different physical regimes. Near half-filling we find an anomalous `Hubbard-I phase', where the band structure is, up to some minor modifications, consistent with the Hubbard-I predictions. At lower temperatures, where the spin response becomes sharp, additional dispersionless `bands' emerge due to the dressing of electrons/holes with spin excitatons. We present a simple phenomenological fit which reproduces the band structure of the insulator quantitatively. The Fermi surface volume in the low doping phase, as derived from the single-particle spectral function, is not consistent with the Luttinger theorem, but qualitatively in agreement with the predictions of the Hubbard-I approximation. The anomalous phase extends up to a hole concentration of 15%, i.e. the underdoped region in the phase diagram of high-T_c superconductors. We also investigate the nature of the magnetic ordering transition in the single particle spectra. We show that the transition to an SDW-like band structure is not accomplished by the formation of any resolvable `precursor bands', but rather by a (spectroscopically invisible) band of spin 3/2 quasiparticles. We discuss implications for the `remnant Fermi surface' in insulating cuprate compounds and the shadow bands in the doped materials.Comment: RevTex-file, 20 PRB pages, 16 figures included partially as gif. A full ps-version including ps-figures can be found at http://theorie.physik.uni-wuerzburg.de/~eder/condmat.ps.gz Hardcopies of figures (or the entire manuscript) can also be obtained by e-mail request to: [email protected]

    Superconductivity and antiferromagnetism in a hard-core boson spin-1 model in two dimensions

    Full text link
    A model of hard-core bosons and spin-1 sites with single-ion anisotropy is proposed to approximately describe hole pairs moving in a background of singlets and triplets with the aim of exploring the relationship between superconductivity and antiferromagnetism. The properties of this model at zero temperature were investigated using quantum Monte Carlo techniques. The most important feature found is the suppression of superconductivity, as long range coherence of preformed pairs, due to the presence of both antiferromagnetism and Sz=±1S^z=\pm 1 excitations. Indications of charge ordered and other phases are also discussed.Comment: One figure, one reference, adde

    Calorimetric Evidence of Multiband Superconductivity in Ba(Fe0.925Co0.075)2As2

    Full text link
    We report on the determination of the electronic heat capacity of a slightly overdoped (x = 0.075) Ba(Fe1-xCox)2As2 single crystal with a Tc of 21.4 K. Our analysis of the temperature dependence of the superconducting-state specific heat provides strong evidence for a two-band s-wave order parameter with gap amplitudes 2D1(0)/kBTc=1.9 and 2D2(0)/kBTc=4.4. Our result is consistent with the recently predicted s+- order parameter [I. I. Mazin et al., Phys. Rev. Lett. 101, 057003 (2008)].Comment: 4 pages, 3 figure

    Interrelation of Superconducting and Antiferromagnetic Gaps in High-Tc Compounds: a Test Case for a Microscopic Theory

    Full text link
    Recent angle resolved photoemission (ARPES) data, which found evidence for a d-wave-like modulation of the antiferromagnetic gap, suggest an intimate interrelation between the antiferromagnetic insulator and the superconductor with its d-wave gap. This poses a new challenge to microscopic descriptions, which should account for this correlation between, at first sight, very different states of matter. Here, we propose a microscopic mechanism which provides a definite correlation between these two different gap structures: it is shown that a projected SO(5) theory, which aims at unifying antiferromagnetism and d-wave superconductivity via a common symmetry principle while explicitly taking the Mott-Hubbard gap into account, correctly describes the observed gap characteristics. Specifically, it accounts for both the dispersion and the order of magnitude difference between the antiferromagnetic gap modulation and the superconducting gap.Comment: 8 pages, 5 figure
    corecore