2,299 research outputs found

    The Arboricity Captures the Complexity of Sampling Edges

    Get PDF
    In this paper, we revisit the problem of sampling edges in an unknown graph G=(V,E)G = (V, E) from a distribution that is (pointwise) almost uniform over EE. We consider the case where there is some a priori upper bound on the arboriciy of GG. Given query access to a graph GG over nn vertices and of average degree dd and arboricity at most α\alpha, we design an algorithm that performs O ⁣(αdlog3nε)O\!\left(\frac{\alpha}{d} \cdot \frac{\log^3 n}{\varepsilon}\right) queries in expectation and returns an edge in the graph such that every edge eEe \in E is sampled with probability (1±ε)/m(1 \pm \varepsilon)/m. The algorithm performs two types of queries: degree queries and neighbor queries. We show that the upper bound is tight (up to poly-logarithmic factors and the dependence in ε\varepsilon), as Ω ⁣(αd)\Omega\!\left(\frac{\alpha}{d} \right) queries are necessary for the easier task of sampling edges from any distribution over EE that is close to uniform in total variational distance. We also prove that even if GG is a tree (i.e., α=1\alpha = 1 so that αd=Θ(1)\frac{\alpha}{d}=\Theta(1)), Ω(lognloglogn)\Omega\left(\frac{\log n}{\log\log n}\right) queries are necessary to sample an edge from any distribution that is pointwise close to uniform, thus establishing that a poly(logn)\mathrm{poly}(\log n) factor is necessary for constant α\alpha. Finally we show how our algorithm can be applied to obtain a new result on approximately counting subgraphs, based on the recent work of Assadi, Kapralov, and Khanna (ITCS, 2019)

    b anti-b Higgs production at the LHC: Yukawa corrections and the leading Landau singularity

    Full text link
    At tree-level Higgs production in association with a b-quark pair proceeds through the small Yukawa bottom coupling in the Standard Model. Even in the limit where this coupling vanishes, electroweak one-loop effects, through the top-Higgs Yukawa coupling in particular, can still trigger this reaction. This contribution is small for Higgs masses around 120GeV but it quickly picks up for higher Higgs masses especially because the one-loop amplitude develops a leading Landau singularity and new thresholds open up. These effects can be viewed as the production of a pair of top quarks which rescatter to give rise to Higgs production through WW fusion. We study the leading Landau singularity in detail. Since this singularity is not integrable when the one-loop amplitude is squared, we regulate the cross section by taking into account the width of the internal top and W particles. This requires that we extend the usual box one-loop function to the case of imaginary masses. We show how this can be implemented analytically in our case. We study in some detail the cross section at the LHC as a function of the Higgs mass and show how some distributions can be drastically affected compared to the tree-level result.Comment: 48 pages, 20 figures. Phys.Rev.D accepted version. Conclusions unchanged, minor changes and references adde

    A Cellular Automaton Model for Diffusive and Dissipative Systems

    Get PDF
    We study a cellular automaton model, which allows diffusion of energy (or equivalently any other physical quantities such as mass of a particular compound) at every lattice site after each timestep. Unit amount of energy is randomly added onto a site. Whenever the local energy content of a site reaches a fixed threshold Ec1E_{c1}, energy will be dissipated. Dissipation of energy propagates to the neighboring sites provided that the energy contents of those sites are greater than or equal to another fixed threshold Ec2(Ec1)E_{c2} (\leq E_{c1}). Under such dynamics, the system evolves into three different types of states depending on the values of Ec1E_{c1} and Ec2E_{c2} as reflected in their dissipation size distributions, namely: localized peaks, power laws, or exponential laws. This model is able to describe the behaviors of various physical systems including the statistics of burst sizes and burst rates in type-I X-ray bursters. Comparisons between our model and the famous forest-fire model (FFM) are made.Comment: in REVTEX 3.0. Figures available on request. Extensively revised. Accepted by Phys.Rev.

    Twistors, Harmonics and Holomorphic Chern-Simons

    Full text link
    We show that the off-shell N=3 action of N=4 super Yang-Mills can be written as a holomorphic Chern-Simons action whose Dolbeault operator is constructed from a complex-real (CR) structure of harmonic space. We also show that the local space-time operators can be written as a Penrose transform on the coset SU(3)/(U(1) \times U(1)). We observe a strong similarity to ambitwistor space constructions.Comment: 34 pages, 3 figures, v2: replaced with published version, v3: Added referenc

    String Effects on Fermi--Dirac Correlation Measurements

    Get PDF
    We investigate some recent measurements of Fermi--Dirac correlations by the LEP collaborations indicating surprisingly small source radii for the production of baryons in e+ee^+e^--annihilation at the Z0Z^0 peak. In the hadronization models there are besides the Fermi--Dirac correlation effect also a strong dynamical (anti-)correlation. We demonstrate that the extraction of the pure FD effect is highly dependent on a realistic Monte Carlo event generator, both for separation of those dynamical correlations which are not related to Fermi--Dirac statistics, and for corrections of the data and background subtractions. Although the model can be tuned to well reproduce single particle distributions, there are large model-uncertainties when it comes to correlations between identical baryons. We therefore, unfortunately, have to conclude that it is at present not possible to make any firm conclusion about the source radii relevant for baryon production at LEP

    Quenched Approximation Artifacts: A study in 2-dimensional QED

    Full text link
    The spectral properties of the Wilson-Dirac operator in 2-dimensional QED responsible for the appearance of exceptional configurations in quenched simulations are studied in detail. The mass singularity structure of the quenched functional integral is shown to be extremely compicated, with multiple branch points and cuts. The connection of lattice topological charge and exactly real eigenmodes is explored using cooling techniques. The lattice volume and spacing dependence of these modes is studied, as is the effect of clover improvement of the action. A recently proposed modified quenched approximation is applied to the study of meson correlators, and the results compared with both naive quenched and full dynamical calculations of the same quantity.Comment: 34 pages (Latex) plus 9 embedded figures; title change

    Liquid metals as a divertor plasma facing material explored using the Pilot-PSI and Magnum-PSI linear devices

    Get PDF
    Abstract For DEMO and beyond liquid metal plasma facing components are considered due to their resilience to erosion through flowed replacement, potential for cooling beyond conduction and inherent immunity to many of the issues of neutron loading compared to solid materials. The development curve of liquid metals is behind that of e.g. tungsten however and tokamak-based research is currently somewhat limited in scope. Therefore investigation in linear plasma devices can provide faster progress under controlled and well-diagnosed conditions in assessing many of the issues surrounding the use of liquid metals. The linear plasma devices Magnum-PSI and Pilot-PSI are capable of producing DEMO relevant plasma fluxes which well replicate expected divertor conditions, and the exploration of physics issues for tin (Sn) and lithium (Li) such as vapour-shielding, erosion under high particle flux loading and overall power handing are reviewed here. A deeper understanding of erosion and deposition through this work indicates that stannane formation may play an important role in enhancing Sn erosion, while on the other hand the strong hydrogen isotope affinity reduces the evaporation rate and sputtering yields for Li. In combination with the strong re-deposition rates which have been observed under this type of high density plasma this implies an increase in the operational temperature range, implying a power handling range of 20-25 MW m -2 for Sn and up to 12.5 MW m -2 for Li could be achieved. Vapour shielding may be expected to act as a self-protection mechanism in reducing the heat load to the substrate for off-normal events in the case of Sn, but may potentially be a continual mode of operation for Li.</p
    corecore