1,844 research outputs found

    NMR relaxation rate in non-centrosymmetric superconductors

    Full text link
    The spin-lattice relaxation rate of nuclear magnetic resonance in a clean superconductor without inversion center is calculated for arbitrary pairing symmetry and band structure, in the presence of strong spin-orbit coupling.Comment: 4 page

    Spin fluctuations and superconductivity in noncentrosymmetric heavy fermion systems CeRhSi3_3 and CeIrSi3_3

    Full text link
    We study the normal and the superconducting properties in noncentrosymmetric heavy fermion superconductors CeRhSi3_3 and CeIrSi3_3. For the normal state, we show that experimentally observed linear temperature dependence of the resistivity is understood through the antiferromagnetic spin fluctuations near the quantum critical point (QCP) in three dimensions. For the superconducting state, we derive a general formula to calculate the upper critical field Hc2H_{c2}, with which we can treat the Pauli and the orbital depairing effect on an equal footing. The strong coupling effect for general electronic structures is also taken into account. We show that the experimentally observed features in Hc2∄z^H_{c2}\parallel \hat{z}, the huge value up to 30(T), the downward curvatures, and the strong pressure dependence, are naturally understood as an interplay of the Rashba spin-orbit interaction due to the lack of inversion symmetry and the spin fluctuations near the QCP. The large anisotropy between Hc2∄z^H_{c2}\parallel \hat{z} and Hc2⊄z^H_{c2}\perp \hat{z} is explained in terms of the spin-orbit interaction. Furthermore, a possible realization of the Fulde-Ferrell- Larkin-Ovchinnikov state for H⊄z^H\perp \hat{z} is studied. We also examine effects of spin-flip scattering processes in the pairing interaction and those of the applied magnetic field on the spin fluctuations. We find that the above mentioned results are robust against these effects. The consistency of our results strongly supports the scenario that the superconductivity in CeRhSi3_3 and CeIrSi3_3 is mediated by the spin fluctuations near the QCP.Comment: 21pages, 13figures, to be published in Phys. Rev.

    Let's Twist Again: General Metrics of G(2) Holonomy from Gauged Supergravity

    Get PDF
    We construct all complete metrics of cohomogeneity one G(2) holonomy with S^3 x S^3 principal orbits from gauged supergravity. Our approach rests on a generalization of the twisting procedure used in this framework. It corresponds to a non-trivial embedding of the special Lagrangian three-cycle wrapped by the D6-branes in the lower dimensional supergravity. There are constraints that neatly reduce the general ansatz to a six functions one. Within this approach, the Hitchin system and the flop transformation are nicely realized in eight dimensional gauged supergravity.Comment: 31 pages, latex; v2: minor changes, references adde

    Phases of dual superconductivity and confinement in softly broken N=2 supersymmetric Yang-Mills theories

    Get PDF
    We study the electric flux tubes that undertake color confinement in N=2 supersymmetric Yang-Mills theories softly broken down to N=1 by perturbing with the first two Casimir operators. The relevant Abelian Higgs model is not the standard one due to the presence of an off-diagonal coupling among different magnetic U(1) factors. We perform a preliminary study of this model at a qualitative level. BPS vortices are explicitely obtained for particular values of the soft breaking parameters. Generically however, even in the ultrastrong scaling limit, vortices are not critical but live in a "hybrid" type II phase. Also, ratios among string tensions are seen to follow no simple pattern. We examine the situation at the half Higgsed vacua and find evidence for solutions with the behaviour of superconducting strings. In some cases they are solutions to BPS equations.Comment: 15 pages, 1 figure, revtex; v2: typos corrected, final versio

    On the spin susceptibility of noncentrosymmetric superconductors

    Full text link
    We calculate the spin susceptibility of a superconductor without inversion symmetry, both in the clean and disordered cases. The susceptibility has a large residual value at zero temperature, which is further enhanced in the presence of scalar impurities.Comment: 12 pages, 3 figure

    Helical vortex phase in the non-centrosymmetric CePt_3Si

    Full text link
    We consider the role of magnetic fields on the broken inversion superconductor CePt_3Si. We show that upper critical field for a field along the c-axis exhibits a much weaker paramagnetic effect than for a field applied perpendicular to the c-axis. The in-plane paramagnetic effect is strongly reduced by the appearance of helical structure in the order parameter. We find that to get good agreement between theory and recent experimental measurements of H_{c2}, this helical structure is required. We propose a Josephson junction experiment that can be used to detect this helical order. In particular, we predict that Josephson current will exhibit a magnetic interference pattern for a magnetic field applied perpendicular to the junction normal. We also discuss unusual magnetic effects associated with the helical order.Comment: 5 pages, 2 figures, Accepted as Phys Rev. Lette

    Multi-Instanton Calculus and Equivariant Cohomology

    Get PDF
    We present a systematic derivation of multi-instanton amplitudes in terms of ADHM equivariant cohomology. The results rely on a supersymmetric formulation of the localization formula for equivariant forms. We examine the cases of N=4 and N=2 gauge theories with adjoint and fundamental matter.Comment: 29 pages, one more reference adde

    Microscopic Mechanism and Pairing Symmetry of Superconductivity in the Noncentrosymmetric Heavy Fermion Systems CeRhSI3_3 and CeIrSi3_3

    Full text link
    We study the pairing symmetry of the noncentrosymmetric heavy fermion superconductors CeRhSi3_3 and CeIrSi3_3 under pressures, which are both antiferromagnets at ambient pressure. We solve the Eliashberg equation by means of the random phase approximation and find that the mixed state of extended s-wave and p-wave rather than the d+fd+f wave state could be realized by enhanced antiferromagnetic spin fluctuations. It is elucidated that the gap function has line nodes on the Fermi surface and the resulting density of state in the superconducting state shows a similar character to that of usual d-wave superconductors, resulting in the NMR relaxation rate 1/(T1T)1/(T_1T) that exhibits no coherence peak and behaves like 1/(T1T)∝T21/(T_1T)\propto T^2 at low temperatures

    Topological quantum field theory and four-manifolds

    Get PDF
    I review some recent results on four-manifold invariants which have been obtained in the context of topological quantum field theory. I focus on three different aspects: (a) the computation of correlation functions, which give explicit results for the Donaldson invariants of non-simply connected manifolds, and for generalizations of these invariants to the gauge group SU(N); (b) compactifications to lower dimensions, and relations with three-manifold topology and with intersection theory on the moduli space of flat connections on Riemann surfaces; (c) four-dimensional theories with critical behavior, which give some remarkable constraints on Seiberg-Witten invariants and new results on the geography of four-manifolds.Comment: 10 pages, LaTeX. Talk given at the 3rd ECM, Barcelona, July 2000; references adde

    Emergent Nodal Excitations due to the Coexistence of Superconductivity and Antiferromagnetism: Cases with and without Inversion Symmetry

    Full text link
    We argue the emergence of nodal excitations due to the coupling with static antiferromagnetic order in fully-gapped superconducting states in both cases with and without inversion symmetry. This line node structure is not accompanied with the sign change of the superconducting gap, in contrast to usual unconventional Cooper pairs with higher angular momenta. In the case without inversion symmetry, the stability of the nodal excitations crucially depends on the direction of the antiferromagnetic staggered magnetic moment. A possible realization of this phenomenon in CePt3_3Si is discussed.Comment: 4 pages, 7 figure
    • 

    corecore